ring/aead/aes/
ffi.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// Copyright 2018-2024 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use super::{Block, KeyBytes, Overlapping, BLOCK_LEN};
use crate::{bits::BitLength, c, error};
use core::{
    ffi::{c_int, c_uint},
    num::{NonZeroU32, NonZeroUsize},
};

/// nonce || big-endian counter.
#[repr(transparent)]
pub(in super::super) struct Counter(pub(super) [u8; BLOCK_LEN]);

// Keep this in sync with AES_KEY in aes.h.
#[repr(C)]
#[derive(Clone)]
pub(in super::super) struct AES_KEY {
    pub rd_key: [u32; 4 * (MAX_ROUNDS + 1)],
    pub rounds: c_uint,
}

// Keep this in sync with `AES_MAXNR` in aes.h.
const MAX_ROUNDS: usize = 14;

impl AES_KEY {
    #[inline]
    pub(super) unsafe fn new(
        f: unsafe extern "C" fn(*const u8, BitLength<c_int>, *mut AES_KEY) -> c_int,
        bytes: KeyBytes<'_>,
    ) -> Result<Self, error::Unspecified> {
        let mut key = Self {
            rd_key: [0; 4 * (MAX_ROUNDS + 1)],
            rounds: 0,
        };

        let (bytes, key_bits) = match bytes {
            KeyBytes::AES_128(bytes) => (&bytes[..], BitLength::from_bits(128)),
            KeyBytes::AES_256(bytes) => (&bytes[..], BitLength::from_bits(256)),
        };

        // Unusually, in this case zero means success and non-zero means failure.
        if 0 == unsafe { f(bytes.as_ptr(), key_bits, &mut key) } {
            debug_assert_ne!(key.rounds, 0); // Sanity check initialization.
            Ok(key)
        } else {
            Err(error::Unspecified)
        }
    }
}

#[cfg(all(target_arch = "arm", target_endian = "little"))]
impl AES_KEY {
    pub(super) unsafe fn derive(
        f: for<'a> unsafe extern "C" fn(*mut AES_KEY, &'a AES_KEY),
        src: &Self,
    ) -> Self {
        let mut r = AES_KEY {
            rd_key: [0u32; 4 * (MAX_ROUNDS + 1)],
            rounds: 0,
        };
        unsafe { f(&mut r, src) };
        r
    }

    pub(super) fn rounds(&self) -> u32 {
        self.rounds
    }
}

// SAFETY:
//  * The function `$name` must read `bits` bits from `user_key`; `bits` will
//    always be a valid AES key length, i.e. a whole number of bytes.
//  * `$name` must set `key.rounds` to the value expected by the corresponding
//    encryption/decryption functions and return 0, or otherwise must return
//    non-zero to indicate failure.
//  * `$name` may inspect CPU features.
//
// In BoringSSL, the C prototypes for these are in
// crypto/fipsmodule/aes/internal.h.
macro_rules! set_encrypt_key {
    ( $name:ident, $key_bytes:expr $(,)? ) => {{
        use crate::bits::BitLength;
        use core::ffi::c_int;
        prefixed_extern! {
            fn $name(user_key: *const u8, bits: BitLength<c_int>, key: *mut AES_KEY) -> c_int;
        }
        $crate::aead::aes::ffi::AES_KEY::new($name, $key_bytes)
    }};
}

macro_rules! encrypt_block {
    ($name:ident, $block:expr, $key:expr) => {{
        use crate::aead::aes::{ffi::AES_KEY, Block};
        prefixed_extern! {
            fn $name(a: &Block, r: *mut Block, key: &AES_KEY);
        }
        $key.encrypt_block($name, $block)
    }};
}

impl AES_KEY {
    #[inline]
    pub(super) unsafe fn encrypt_block(
        &self,
        f: unsafe extern "C" fn(&Block, *mut Block, &AES_KEY),
        a: Block,
    ) -> Block {
        let mut result = core::mem::MaybeUninit::uninit();
        unsafe {
            f(&a, result.as_mut_ptr(), self);
            result.assume_init()
        }
    }
}

/// SAFETY:
///   * The caller must ensure that `$key` was initialized with the
///     `set_encrypt_key!` invocation that `$name` requires.
///   * The caller must ensure that fhe function `$name` satisfies the conditions
///     for the `f` parameter to `ctr32_encrypt_blocks`.
macro_rules! ctr32_encrypt_blocks {
    ($name:ident, $in_out:expr, $key:expr, $ctr:expr $(,)? ) => {{
        use crate::{
            aead::aes::{ffi::AES_KEY, Counter, BLOCK_LEN},
            c,
        };
        prefixed_extern! {
            fn $name(
                input: *const [u8; BLOCK_LEN],
                output: *mut [u8; BLOCK_LEN],
                blocks: c::NonZero_size_t,
                key: &AES_KEY,
                ivec: &Counter,
            );
        }
        $key.ctr32_encrypt_blocks($name, $in_out, $ctr)
    }};
}

impl AES_KEY {
    /// SAFETY:
    ///   * `f` must not read more than `blocks` blocks from `input`.
    ///   * `f` must write exactly `block` blocks to `output`.
    ///   * In particular, `f` must handle blocks == 0 without reading from `input`
    ///     or writing to `output`.
    ///   * `f` must support the input overlapping with the output exactly or
    ///     with any nonnegative offset `n` (i.e. `input == output.add(n)`);
    ///     `f` does NOT need to support the cases where input < output.
    ///   * `key` must have been initialized with the `set_encrypt_key!` invocation
    ///      that corresponds to `f`.
    ///   * `f` may inspect CPU features.
    #[inline]
    pub(super) unsafe fn ctr32_encrypt_blocks(
        &self,
        f: unsafe extern "C" fn(
            input: *const [u8; BLOCK_LEN],
            output: *mut [u8; BLOCK_LEN],
            blocks: c::NonZero_size_t,
            key: &AES_KEY,
            ivec: &Counter,
        ),
        in_out: Overlapping<'_>,
        ctr: &mut Counter,
    ) {
        in_out.with_input_output_len(|input, output, len| {
            debug_assert_eq!(len % BLOCK_LEN, 0);

            let blocks = match NonZeroUsize::new(len / BLOCK_LEN) {
                Some(blocks) => blocks,
                None => {
                    return;
                }
            };

            let input: *const [u8; BLOCK_LEN] = input.cast();
            let output: *mut [u8; BLOCK_LEN] = output.cast();
            let blocks_u32: NonZeroU32 = blocks.try_into().unwrap();

            // SAFETY:
            //  * `input` points to `blocks` blocks.
            //  * `output` points to space for `blocks` blocks to be written.
            //  * input == output.add(n), where n == src.start, and the caller is
            //    responsible for ensuing this sufficient for `f` to work correctly.
            //  * `blocks` is non-zero so `f` doesn't have to work for empty slices.
            //  * The caller is responsible for ensuring `key` was initialized by the
            //    `set_encrypt_key!` invocation required by `f`.
            unsafe {
                f(input, output, blocks, self, ctr);
            }

            ctr.increment_by_less_safe(blocks_u32);
        });
    }
}