ecdsa/
hazmat.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
//! Low-level ECDSA primitives.
//!
//! # ⚠️ Warning: Hazmat!
//!
//! YOU PROBABLY DON'T WANT TO USE THESE!
//!
//! These primitives are easy-to-misuse low-level interfaces.
//!
//! If you are an end user / non-expert in cryptography, do not use these!
//! Failure to use them correctly can lead to catastrophic failures including
//! FULL PRIVATE KEY RECOVERY!

use crate::{Error, Result};
use core::cmp;
use elliptic_curve::{generic_array::typenum::Unsigned, FieldBytes, PrimeCurve};

#[cfg(feature = "arithmetic")]
use {
    crate::{RecoveryId, SignatureSize},
    elliptic_curve::{
        ff::{Field, PrimeField},
        group::{Curve as _, Group},
        ops::{Invert, LinearCombination, MulByGenerator, Reduce},
        point::AffineCoordinates,
        scalar::IsHigh,
        subtle::CtOption,
        CurveArithmetic, ProjectivePoint, Scalar,
    },
};

#[cfg(feature = "digest")]
use {
    elliptic_curve::FieldBytesSize,
    signature::{
        digest::{core_api::BlockSizeUser, Digest, FixedOutput, FixedOutputReset},
        PrehashSignature,
    },
};

#[cfg(feature = "rfc6979")]
use elliptic_curve::{FieldBytesEncoding, ScalarPrimitive};

#[cfg(any(feature = "arithmetic", feature = "digest"))]
use crate::{elliptic_curve::generic_array::ArrayLength, Signature};

/// Try to sign the given prehashed message using ECDSA.
///
/// This trait is intended to be implemented on a type with access to the
/// secret scalar via `&self`, such as particular curve's `Scalar` type.
#[cfg(feature = "arithmetic")]
pub trait SignPrimitive<C>:
    AsRef<Self>
    + Into<FieldBytes<C>>
    + IsHigh
    + PrimeField<Repr = FieldBytes<C>>
    + Reduce<C::Uint, Bytes = FieldBytes<C>>
    + Sized
where
    C: PrimeCurve + CurveArithmetic<Scalar = Self>,
    SignatureSize<C>: ArrayLength<u8>,
{
    /// Try to sign the prehashed message.
    ///
    /// Accepts the following arguments:
    ///
    /// - `k`: ephemeral scalar value. MUST BE UNIFORMLY RANDOM!!!
    /// - `z`: message digest to be signed. MUST BE OUTPUT OF A CRYPTOGRAPHICALLY
    ///        SECURE DIGEST ALGORITHM!!!
    ///
    /// # Returns
    ///
    /// ECDSA [`Signature`] and, when possible/desired, a [`RecoveryId`]
    /// which can be used to recover the verifying key for a given signature.
    fn try_sign_prehashed<K>(
        &self,
        k: K,
        z: &FieldBytes<C>,
    ) -> Result<(Signature<C>, Option<RecoveryId>)>
    where
        K: AsRef<Self> + Invert<Output = CtOption<Self>>,
    {
        sign_prehashed(self, k, z).map(|(sig, recid)| (sig, (Some(recid))))
    }

    /// Try to sign the given message digest deterministically using the method
    /// described in [RFC6979] for computing ECDSA ephemeral scalar `k`.
    ///
    /// Accepts the following parameters:
    /// - `z`: message digest to be signed.
    /// - `ad`: optional additional data, e.g. added entropy from an RNG
    ///
    /// [RFC6979]: https://datatracker.ietf.org/doc/html/rfc6979
    #[cfg(feature = "rfc6979")]
    fn try_sign_prehashed_rfc6979<D>(
        &self,
        z: &FieldBytes<C>,
        ad: &[u8],
    ) -> Result<(Signature<C>, Option<RecoveryId>)>
    where
        Self: From<ScalarPrimitive<C>> + Invert<Output = CtOption<Self>>,
        D: Digest + BlockSizeUser + FixedOutput<OutputSize = FieldBytesSize<C>> + FixedOutputReset,
    {
        let k = Scalar::<C>::from_repr(rfc6979::generate_k::<D, _>(
            &self.to_repr(),
            &C::ORDER.encode_field_bytes(),
            z,
            ad,
        ))
        .unwrap();

        self.try_sign_prehashed::<Self>(k, z)
    }
}

/// Verify the given prehashed message using ECDSA.
///
/// This trait is intended to be implemented on type which can access
/// the affine point represeting the public key via `&self`, such as a
/// particular curve's `AffinePoint` type.
#[cfg(feature = "arithmetic")]
pub trait VerifyPrimitive<C>: AffineCoordinates<FieldRepr = FieldBytes<C>> + Copy + Sized
where
    C: PrimeCurve + CurveArithmetic<AffinePoint = Self>,
    SignatureSize<C>: ArrayLength<u8>,
{
    /// Verify the prehashed message against the provided ECDSA signature.
    ///
    /// Accepts the following arguments:
    ///
    /// - `z`: message digest to be verified. MUST BE OUTPUT OF A
    ///        CRYPTOGRAPHICALLY SECURE DIGEST ALGORITHM!!!
    /// - `sig`: signature to be verified against the key and message
    fn verify_prehashed(&self, z: &FieldBytes<C>, sig: &Signature<C>) -> Result<()> {
        verify_prehashed(&ProjectivePoint::<C>::from(*self), z, sig)
    }

    /// Verify message digest against the provided signature.
    #[cfg(feature = "digest")]
    fn verify_digest<D>(&self, msg_digest: D, sig: &Signature<C>) -> Result<()>
    where
        D: FixedOutput<OutputSize = FieldBytesSize<C>>,
    {
        self.verify_prehashed(&msg_digest.finalize_fixed(), sig)
    }
}

/// Bind a preferred [`Digest`] algorithm to an elliptic curve type.
///
/// Generally there is a preferred variety of the SHA-2 family used with ECDSA
/// for a particular elliptic curve.
///
/// This trait can be used to specify it, and with it receive a blanket impl of
/// [`PrehashSignature`], used by [`signature_derive`][1]) for the [`Signature`]
/// type for a particular elliptic curve.
///
/// [1]: https://github.com/RustCrypto/traits/tree/master/signature/derive
#[cfg(feature = "digest")]
pub trait DigestPrimitive: PrimeCurve {
    /// Preferred digest to use when computing ECDSA signatures for this
    /// elliptic curve. This is typically a member of the SHA-2 family.
    type Digest: BlockSizeUser
        + Digest
        + FixedOutput<OutputSize = FieldBytesSize<Self>>
        + FixedOutputReset;
}

#[cfg(feature = "digest")]
impl<C> PrehashSignature for Signature<C>
where
    C: DigestPrimitive,
    <FieldBytesSize<C> as core::ops::Add>::Output: ArrayLength<u8>,
{
    type Digest = C::Digest;
}

/// Partial implementation of the `bits2int` function as defined in
/// [RFC6979 § 2.3.2] as well as [SEC1] § 2.3.8.
///
/// This is used to convert a message digest whose size may be smaller or
/// larger than the size of the curve's scalar field into a serialized
/// (unreduced) field element.
///
/// [RFC6979 § 2.3.2]: https://datatracker.ietf.org/doc/html/rfc6979#section-2.3.2
/// [SEC1]: https://www.secg.org/sec1-v2.pdf
pub fn bits2field<C: PrimeCurve>(bits: &[u8]) -> Result<FieldBytes<C>> {
    // Minimum allowed bits size is half the field size
    if bits.len() < C::FieldBytesSize::USIZE / 2 {
        return Err(Error::new());
    }

    let mut field_bytes = FieldBytes::<C>::default();

    match bits.len().cmp(&C::FieldBytesSize::USIZE) {
        cmp::Ordering::Equal => field_bytes.copy_from_slice(bits),
        cmp::Ordering::Less => {
            // If bits is smaller than the field size, pad with zeroes on the left
            field_bytes[(C::FieldBytesSize::USIZE - bits.len())..].copy_from_slice(bits);
        }
        cmp::Ordering::Greater => {
            // If bits is larger than the field size, truncate
            field_bytes.copy_from_slice(&bits[..C::FieldBytesSize::USIZE]);
        }
    }

    Ok(field_bytes)
}

/// Sign a prehashed message digest using the provided secret scalar and
/// ephemeral scalar, returning an ECDSA signature.
///
/// Accepts the following arguments:
///
/// - `d`: signing key. MUST BE UNIFORMLY RANDOM!!!
/// - `k`: ephemeral scalar value. MUST BE UNIFORMLY RANDOM!!!
/// - `z`: message digest to be signed. MUST BE OUTPUT OF A CRYPTOGRAPHICALLY
///        SECURE DIGEST ALGORITHM!!!
///
/// # Returns
///
/// ECDSA [`Signature`] and, when possible/desired, a [`RecoveryId`]
/// which can be used to recover the verifying key for a given signature.
#[cfg(feature = "arithmetic")]
#[allow(non_snake_case)]
pub fn sign_prehashed<C, K>(
    d: &Scalar<C>,
    k: K,
    z: &FieldBytes<C>,
) -> Result<(Signature<C>, RecoveryId)>
where
    C: PrimeCurve + CurveArithmetic,
    K: AsRef<Scalar<C>> + Invert<Output = CtOption<Scalar<C>>>,
    SignatureSize<C>: ArrayLength<u8>,
{
    // TODO(tarcieri): use `NonZeroScalar<C>` for `k`.
    if k.as_ref().is_zero().into() {
        return Err(Error::new());
    }

    let z = <Scalar<C> as Reduce<C::Uint>>::reduce_bytes(z);

    // Compute scalar inversion of 𝑘
    let k_inv = Option::<Scalar<C>>::from(k.invert()).ok_or_else(Error::new)?;

    // Compute 𝑹 = 𝑘×𝑮
    let R = ProjectivePoint::<C>::mul_by_generator(k.as_ref()).to_affine();

    // Lift x-coordinate of 𝑹 (element of base field) into a serialized big
    // integer, then reduce it into an element of the scalar field
    let r = Scalar::<C>::reduce_bytes(&R.x());
    let x_is_reduced = r.to_repr() != R.x();

    // Compute 𝒔 as a signature over 𝒓 and 𝒛.
    let s = k_inv * (z + (r * d));

    // NOTE: `Signature::from_scalars` checks that both `r` and `s` are non-zero.
    let signature = Signature::from_scalars(r, s)?;
    let recovery_id = RecoveryId::new(R.y_is_odd().into(), x_is_reduced);
    Ok((signature, recovery_id))
}

/// Verify the prehashed message against the provided ECDSA signature.
///
/// Accepts the following arguments:
///
/// - `q`: public key with which to verify the signature.
/// - `z`: message digest to be verified. MUST BE OUTPUT OF A
///        CRYPTOGRAPHICALLY SECURE DIGEST ALGORITHM!!!
/// - `sig`: signature to be verified against the key and message.
#[cfg(feature = "arithmetic")]
pub fn verify_prehashed<C>(
    q: &ProjectivePoint<C>,
    z: &FieldBytes<C>,
    sig: &Signature<C>,
) -> Result<()>
where
    C: PrimeCurve + CurveArithmetic,
    SignatureSize<C>: ArrayLength<u8>,
{
    let z = Scalar::<C>::reduce_bytes(z);
    let (r, s) = sig.split_scalars();
    let s_inv = *s.invert_vartime();
    let u1 = z * s_inv;
    let u2 = *r * s_inv;
    let x = ProjectivePoint::<C>::lincomb(&ProjectivePoint::<C>::generator(), &u1, q, &u2)
        .to_affine()
        .x();

    if *r == Scalar::<C>::reduce_bytes(&x) {
        Ok(())
    } else {
        Err(Error::new())
    }
}

#[cfg(test)]
mod tests {
    use super::bits2field;
    use elliptic_curve::dev::MockCurve;
    use hex_literal::hex;

    #[test]
    fn bits2field_too_small() {
        assert!(bits2field::<MockCurve>(b"").is_err());
    }

    #[test]
    fn bits2field_size_less() {
        let prehash = hex!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");
        let field_bytes = bits2field::<MockCurve>(&prehash).unwrap();
        assert_eq!(
            field_bytes.as_slice(),
            &hex!("00000000000000000000000000000000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA")
        );
    }

    #[test]
    fn bits2field_size_eq() {
        let prehash = hex!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");
        let field_bytes = bits2field::<MockCurve>(&prehash).unwrap();
        assert_eq!(field_bytes.as_slice(), &prehash);
    }

    #[test]
    fn bits2field_size_greater() {
        let prehash = hex!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB");
        let field_bytes = bits2field::<MockCurve>(&prehash).unwrap();
        assert_eq!(
            field_bytes.as_slice(),
            &hex!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA")
        );
    }
}