halo2_base/utils/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
use core::hash::Hash;
use crate::ff::{FromUniformBytes, PrimeField};
#[cfg(not(feature = "halo2-axiom"))]
use crate::halo2_proofs::arithmetic::CurveAffine;
use crate::halo2_proofs::circuit::Value;
#[cfg(feature = "halo2-axiom")]
pub use crate::halo2_proofs::halo2curves::CurveAffineExt;
use num_bigint::BigInt;
use num_bigint::BigUint;
use num_bigint::Sign;
use num_traits::Signed;
use num_traits::{One, Zero};
/// Helper functions for raw halo2 operations to unify slight differences in API for halo2-axiom and halo2-pse
pub mod halo2;
#[cfg(any(test, feature = "test-utils"))]
pub mod testing;
/// Helper trait to convert to and from a [BigPrimeField] by converting a list of [u64] digits
#[cfg(feature = "halo2-axiom")]
pub trait BigPrimeField: ScalarField {
/// Converts a slice of [u64] to [BigPrimeField]
/// * `val`: the slice of u64
///
/// # Assumptions
/// * `val` has the correct length for the implementation
/// * The integer value of `val` is already less than the modulus of `Self`
fn from_u64_digits(val: &[u64]) -> Self;
}
#[cfg(feature = "halo2-axiom")]
impl<F> BigPrimeField for F
where
F: ScalarField + From<[u64; 4]>, // Assume [u64; 4] is little-endian. We only implement ScalarField when this is true.
{
#[inline(always)]
fn from_u64_digits(val: &[u64]) -> Self {
debug_assert!(val.len() <= 4);
let mut raw = [0u64; 4];
raw[..val.len()].copy_from_slice(val);
Self::from(raw)
}
}
/// Helper trait to represent a field element that can be converted into [u64] limbs.
///
/// Note: Since the number of bits necessary to represent a field element is larger than the number of bits in a u64, we decompose the integer representation of the field element into multiple [u64] values e.g. `limbs`.
pub trait ScalarField: PrimeField + FromUniformBytes<64> + From<bool> + Hash + Ord {
/// Returns the base `2<sup>bit_len</sup>` little endian representation of the [ScalarField] element up to `num_limbs` number of limbs (truncates any extra limbs).
///
/// Assumes `bit_len < 64`.
/// * `num_limbs`: number of limbs to return
/// * `bit_len`: number of bits in each limb
fn to_u64_limbs(self, num_limbs: usize, bit_len: usize) -> Vec<u64>;
/// Returns the little endian byte representation of the element.
fn to_bytes_le(&self) -> Vec<u8>;
/// Creates a field element from a little endian byte representation.
///
/// The default implementation assumes that `PrimeField::from_repr` is implemented for little-endian.
/// It should be overriden if this is not the case.
fn from_bytes_le(bytes: &[u8]) -> Self {
let mut repr = Self::Repr::default();
repr.as_mut()[..bytes.len()].copy_from_slice(bytes);
Self::from_repr(repr).unwrap()
}
/// Gets the least significant 32 bits of the field element.
fn get_lower_32(&self) -> u32 {
let bytes = self.to_bytes_le();
let mut lower_32 = 0u32;
for (i, byte) in bytes.into_iter().enumerate().take(4) {
lower_32 |= (byte as u32) << (i * 8);
}
lower_32
}
/// Gets the least significant 64 bits of the field element.
fn get_lower_64(&self) -> u64 {
let bytes = self.to_bytes_le();
let mut lower_64 = 0u64;
for (i, byte) in bytes.into_iter().enumerate().take(8) {
lower_64 |= (byte as u64) << (i * 8);
}
lower_64
}
}
// See below for implementations
// Later: will need to separate BigPrimeField from ScalarField when Goldilocks is introduced
/// [ScalarField] that is ~256 bits long
#[cfg(feature = "halo2-pse")]
pub trait BigPrimeField = PrimeField<Repr = [u8; 32]> + ScalarField;
/// Converts an [Iterator] of u64 digits into `number_of_limbs` limbs of `bit_len` bits returned as a [Vec].
///
/// Assumes: `bit_len < 64`.
/// * `e`: Iterator of [u64] digits
/// * `number_of_limbs`: number of limbs to return
/// * `bit_len`: number of bits in each limb
#[inline(always)]
pub(crate) fn decompose_u64_digits_to_limbs(
e: impl IntoIterator<Item = u64>,
number_of_limbs: usize,
bit_len: usize,
) -> Vec<u64> {
debug_assert!(bit_len < 64);
let mut e = e.into_iter();
// Mask to extract the bits from each digit
let mask: u64 = (1u64 << bit_len) - 1u64;
let mut u64_digit = e.next().unwrap_or(0);
let mut rem = 64;
// For each digit, we extract its individual limbs by repeatedly masking and shifting the digit based on how many bits we have left to extract.
(0..number_of_limbs)
.map(|_| match rem.cmp(&bit_len) {
// If `rem` > `bit_len`, we mask the bits from the `u64_digit` to return the first limb.
// We shift the digit to the right by `bit_len` bits and subtract `bit_len` from `rem`
core::cmp::Ordering::Greater => {
let limb = u64_digit & mask;
u64_digit >>= bit_len;
rem -= bit_len;
limb
}
// If `rem` == `bit_len`, then we mask the bits from the `u64_digit` to return the first limb
// We retrieve the next digit and reset `rem` to 64
core::cmp::Ordering::Equal => {
let limb = u64_digit & mask;
u64_digit = e.next().unwrap_or(0);
rem = 64;
limb
}
// If `rem` < `bit_len`, we retrieve the next digit, mask it, and shift left `rem` bits from the `u64_digit` to return the first limb.
// we shift the digit to the right by `bit_len` - `rem` bits to retrieve the start of the next limb and add 64 - bit_len to `rem` to get the remainder.
core::cmp::Ordering::Less => {
let mut limb = u64_digit;
u64_digit = e.next().unwrap_or(0);
limb |= (u64_digit & ((1u64 << (bit_len - rem)) - 1u64)) << rem;
u64_digit >>= bit_len - rem;
rem += 64 - bit_len;
limb
}
})
.collect()
}
/// Returns the number of bits needed to represent the value of `x`.
pub const fn bit_length(x: u64) -> usize {
(u64::BITS - x.leading_zeros()) as usize
}
/// Returns the ceiling of the base 2 logarithm of `x`.
///
/// `log2_ceil(0)` returns 0.
pub fn log2_ceil(x: u64) -> usize {
(u64::BITS - x.leading_zeros()) as usize - usize::from(x.is_power_of_two())
}
/// Returns the modulus of [BigPrimeField].
pub fn modulus<F: BigPrimeField>() -> BigUint {
fe_to_biguint(&-F::ONE) + 1u64
}
/// Returns the [BigPrimeField] element of 2<sup>n</sup>.
/// * `n`: the desired power of 2.
pub fn power_of_two<F: BigPrimeField>(n: usize) -> F {
biguint_to_fe(&(BigUint::one() << n))
}
/// Converts an immutable reference to [BigUint] to a [BigPrimeField].
/// * `e`: immutable reference to [BigUint]
///
/// # Assumptions:
/// * `e` is less than the modulus of `F`
pub fn biguint_to_fe<F: BigPrimeField>(e: &BigUint) -> F {
#[cfg(feature = "halo2-axiom")]
{
F::from_u64_digits(&e.to_u64_digits())
}
#[cfg(feature = "halo2-pse")]
{
let bytes = e.to_bytes_le();
F::from_bytes_le(&bytes)
}
}
/// Converts an immutable reference to [BigInt] to a [BigPrimeField].
/// * `e`: immutable reference to [BigInt]
///
/// # Assumptions:
/// * The absolute value of `e` is less than the modulus of `F`
pub fn bigint_to_fe<F: BigPrimeField>(e: &BigInt) -> F {
#[cfg(feature = "halo2-axiom")]
{
let (sign, digits) = e.to_u64_digits();
if sign == Sign::Minus {
-F::from_u64_digits(&digits)
} else {
F::from_u64_digits(&digits)
}
}
#[cfg(feature = "halo2-pse")]
{
let (sign, bytes) = e.to_bytes_le();
let f_abs = F::from_bytes_le(&bytes);
if sign == Sign::Minus {
-f_abs
} else {
f_abs
}
}
}
/// Converts an immutable reference to an PrimeField element into a [BigUint] element.
/// * `fe`: immutable reference to PrimeField element to convert
pub fn fe_to_biguint<F: ScalarField>(fe: &F) -> BigUint {
BigUint::from_bytes_le(fe.to_bytes_le().as_ref())
}
/// Converts a [BigPrimeField] element into a [BigInt] element by sending `fe` in `[0, F::modulus())` to
/// ```ignore
/// fe, if fe < F::modulus() / 2
/// fe - F::modulus(), otherwise
/// ```
pub fn fe_to_bigint<F: BigPrimeField>(fe: &F) -> BigInt {
// TODO: `F` should just have modulus as lazy_static or something
let modulus = modulus::<F>();
let e = fe_to_biguint(fe);
if e <= &modulus / 2u32 {
BigInt::from_biguint(Sign::Plus, e)
} else {
BigInt::from_biguint(Sign::Minus, modulus - e)
}
}
/// Decomposes an immutable reference to a [BigPrimeField] element into `number_of_limbs` limbs of `bit_len` bits each and returns a [Vec] of [BigPrimeField] represented by those limbs.
///
/// Assumes `bit_len < 128`.
/// * `e`: immutable reference to [BigPrimeField] element to decompose
/// * `number_of_limbs`: number of limbs to decompose `e` into
/// * `bit_len`: number of bits in each limb
pub fn decompose<F: BigPrimeField>(e: &F, number_of_limbs: usize, bit_len: usize) -> Vec<F> {
if bit_len > 64 {
decompose_biguint(&fe_to_biguint(e), number_of_limbs, bit_len)
} else {
decompose_fe_to_u64_limbs(e, number_of_limbs, bit_len).into_iter().map(F::from).collect()
}
}
/// Decomposes an immutable reference to a [ScalarField] element into `number_of_limbs` limbs of `bit_len` bits each and returns a [Vec] of [u64] represented by those limbs.
///
/// Assumes `bit_len` < 64
/// * `e`: immutable reference to [ScalarField] element to decompose
/// * `number_of_limbs`: number of limbs to decompose `e` into
/// * `bit_len`: number of bits in each limb
pub fn decompose_fe_to_u64_limbs<F: ScalarField>(
e: &F,
number_of_limbs: usize,
bit_len: usize,
) -> Vec<u64> {
#[cfg(feature = "halo2-axiom")]
{
e.to_u64_limbs(number_of_limbs, bit_len)
}
#[cfg(feature = "halo2-pse")]
{
decompose_u64_digits_to_limbs(fe_to_biguint(e).iter_u64_digits(), number_of_limbs, bit_len)
}
}
/// Decomposes an immutable reference to a [BigUint] into `num_limbs` limbs of `bit_len` bits each and returns a [Vec] of [BigPrimeField] represented by those limbs.
///
/// Assumes 64 <= `bit_len` < 128.
/// * `e`: immutable reference to [BigInt] to decompose
/// * `num_limbs`: number of limbs to decompose `e` into
/// * `bit_len`: number of bits in each limb
///
/// Truncates to `num_limbs` limbs if `e` is too large.
pub fn decompose_biguint<F: BigPrimeField>(
e: &BigUint,
num_limbs: usize,
bit_len: usize,
) -> Vec<F> {
// bit_len must be between 64` and 128
debug_assert!((64..128).contains(&bit_len));
let mut e = e.iter_u64_digits();
// Grab first 128-bit limb from iterator
let mut limb0 = e.next().unwrap_or(0) as u128;
let mut rem = bit_len - 64;
let mut u64_digit = e.next().unwrap_or(0);
// Extract second limb (bit length 64) from e
limb0 |= ((u64_digit & ((1u64 << rem) - 1u64)) as u128) << 64u32;
u64_digit >>= rem;
rem = 64 - rem;
// Convert `limb0` into field element `F` and create an iterator by chaining `limb0` with the computing the remaining limbs
core::iter::once(F::from_u128(limb0))
.chain((1..num_limbs).map(|_| {
let mut limb = u64_digit as u128;
let mut bits = rem;
u64_digit = e.next().unwrap_or(0);
if bit_len >= 64 + bits {
limb |= (u64_digit as u128) << bits;
u64_digit = e.next().unwrap_or(0);
bits += 64;
}
rem = bit_len - bits;
limb |= ((u64_digit & ((1u64 << rem) - 1u64)) as u128) << bits;
u64_digit >>= rem;
rem = 64 - rem;
F::from_u128(limb)
}))
.collect()
}
/// Decomposes an immutable reference to a [BigInt] into `num_limbs` limbs of `bit_len` bits each and returns a [Vec] of [BigPrimeField] represented by those limbs.
///
/// Assumes `bit_len < 128`.
/// * `e`: immutable reference to `BigInt` to decompose
/// * `num_limbs`: number of limbs to decompose `e` into
/// * `bit_len`: number of bits in each limb
pub fn decompose_bigint<F: BigPrimeField>(e: &BigInt, num_limbs: usize, bit_len: usize) -> Vec<F> {
if e.is_negative() {
decompose_biguint::<F>(e.magnitude(), num_limbs, bit_len).into_iter().map(|x| -x).collect()
} else {
decompose_biguint(e.magnitude(), num_limbs, bit_len)
}
}
/// Decomposes an immutable reference to a [BigInt] into `num_limbs` limbs of `bit_len` bits each and returns a [Vec] of [BigPrimeField] represented by those limbs wrapped in [Value].
///
/// Assumes `bit_len` < 128.
/// * `e`: immutable reference to `BigInt` to decompose
/// * `num_limbs`: number of limbs to decompose `e` into
/// * `bit_len`: number of bits in each limb
pub fn decompose_bigint_option<F: BigPrimeField>(
value: Value<&BigInt>,
number_of_limbs: usize,
bit_len: usize,
) -> Vec<Value<F>> {
value.map(|e| decompose_bigint(e, number_of_limbs, bit_len)).transpose_vec(number_of_limbs)
}
/// Wraps the internal value of `value` in an [Option].
/// If the value is [None], then the function returns [None].
/// * `value`: Value to convert.
pub fn value_to_option<V>(value: Value<V>) -> Option<V> {
let mut v = None;
value.map(|val| {
v = Some(val);
});
v
}
/// Computes the value of an integer by passing as `input` a [Vec] of its limb values and the `bit_len` (bit length) used.
///
/// Returns the sum of all limbs scaled by 2<sup>(bit_len * i)</sup> where i is the index of the limb.
/// * `input`: Limb values of the integer.
/// * `bit_len`: Length of limb in bits
pub fn compose(input: Vec<BigUint>, bit_len: usize) -> BigUint {
input.iter().rev().fold(BigUint::zero(), |acc, val| (acc << bit_len) + val)
}
/// Helper trait
#[cfg(feature = "halo2-pse")]
pub trait CurveAffineExt: CurveAffine {
/// Returns the raw affine (X, Y) coordinantes
fn into_coordinates(self) -> (Self::Base, Self::Base) {
let coordinates = self.coordinates().unwrap();
(*coordinates.x(), *coordinates.y())
}
}
#[cfg(feature = "halo2-pse")]
impl<C: CurveAffine> CurveAffineExt for C {}
mod scalar_field_impls {
use super::{decompose_u64_digits_to_limbs, ScalarField};
#[cfg(feature = "halo2-pse")]
use crate::ff::PrimeField;
use crate::halo2_proofs::halo2curves::{
bn256::{Fq as bn254Fq, Fr as bn254Fr},
secp256k1::{Fp as secpFp, Fq as secpFq},
};
/// To ensure `ScalarField` is only implemented for `ff:Field` where `Repr` is little endian, we use the following macro
/// to implement the trait for each field.
#[cfg(feature = "halo2-axiom")]
#[macro_export]
macro_rules! impl_scalar_field {
($field:ident) => {
impl ScalarField for $field {
#[inline(always)]
fn to_u64_limbs(self, num_limbs: usize, bit_len: usize) -> Vec<u64> {
// Basically same as `to_repr` but does not go further into bytes
let tmp: [u64; 4] = self.into();
decompose_u64_digits_to_limbs(tmp, num_limbs, bit_len)
}
#[inline(always)]
fn to_bytes_le(&self) -> Vec<u8> {
let tmp: [u64; 4] = (*self).into();
tmp.iter().flat_map(|x| x.to_le_bytes()).collect()
}
#[inline(always)]
fn get_lower_32(&self) -> u32 {
let tmp: [u64; 4] = (*self).into();
tmp[0] as u32
}
#[inline(always)]
fn get_lower_64(&self) -> u64 {
let tmp: [u64; 4] = (*self).into();
tmp[0]
}
}
};
}
/// To ensure `ScalarField` is only implemented for `ff:Field` where `Repr` is little endian, we use the following macro
/// to implement the trait for each field.
#[cfg(feature = "halo2-pse")]
#[macro_export]
macro_rules! impl_scalar_field {
($field:ident) => {
impl ScalarField for $field {
#[inline(always)]
fn to_u64_limbs(self, num_limbs: usize, bit_len: usize) -> Vec<u64> {
let bytes = self.to_repr();
let digits = (0..4)
.map(|i| u64::from_le_bytes(bytes[i * 8..(i + 1) * 8].try_into().unwrap()));
decompose_u64_digits_to_limbs(digits, num_limbs, bit_len)
}
#[inline(always)]
fn to_bytes_le(&self) -> Vec<u8> {
self.to_repr().to_vec()
}
}
};
}
impl_scalar_field!(bn254Fr);
impl_scalar_field!(bn254Fq);
impl_scalar_field!(secpFp);
impl_scalar_field!(secpFq);
}
/// Module for reading parameters for Halo2 proving system from the file system.
pub mod fs {
use std::{
env::var,
fs::{self, File},
io::{BufReader, BufWriter},
};
use crate::halo2_proofs::{
halo2curves::{
bn256::{Bn256, G1Affine},
CurveAffine,
},
poly::{
commitment::{Params, ParamsProver},
kzg::commitment::ParamsKZG,
},
};
use rand_chacha::{rand_core::SeedableRng, ChaCha20Rng};
/// Reads the srs from a file found in `./params/kzg_bn254_{k}.srs` or `{dir}/kzg_bn254_{k}.srs` if `PARAMS_DIR` env var is specified.
/// * `k`: degree that expresses the size of circuit (i.e., 2^<sup>k</sup> is the number of rows in the circuit)
pub fn read_params(k: u32) -> ParamsKZG<Bn256> {
let dir = var("PARAMS_DIR").unwrap_or_else(|_| "./params".to_string());
ParamsKZG::<Bn256>::read(&mut BufReader::new(
File::open(format!("{dir}/kzg_bn254_{k}.srs").as_str())
.expect("Params file does not exist"),
))
.unwrap()
}
/// Attempts to read the srs from a file found in `./params/kzg_bn254_{k}.srs` or `{dir}/kzg_bn254_{k}.srs` if `PARAMS_DIR` env var is specified, creates a file it if it does not exist.
/// * `k`: degree that expresses the size of circuit (i.e., 2^<sup>k</sup> is the number of rows in the circuit)
/// * `setup`: a function that creates the srs
pub fn read_or_create_srs<'a, C: CurveAffine, P: ParamsProver<'a, C>>(
k: u32,
setup: impl Fn(u32) -> P,
) -> P {
let dir = var("PARAMS_DIR").unwrap_or_else(|_| "./params".to_string());
let path = format!("{dir}/kzg_bn254_{k}.srs");
match File::open(path.as_str()) {
Ok(f) => {
#[cfg(feature = "display")]
println!("read params from {path}");
let mut reader = BufReader::new(f);
P::read(&mut reader).unwrap()
}
Err(_) => {
#[cfg(feature = "display")]
println!("creating params for {k}");
fs::create_dir_all(dir).unwrap();
let params = setup(k);
params.write(&mut BufWriter::new(File::create(path).unwrap())).unwrap();
params
}
}
}
/// Generates the SRS for the KZG scheme and writes it to a file found in "./params/kzg_bn2_{k}.srs` or `{dir}/kzg_bn254_{k}.srs` if `PARAMS_DIR` env var is specified, creates a file it if it does not exist"
/// * `k`: degree that expresses the size of circuit (i.e., 2^<sup>k</sup> is the number of rows in the circuit)
pub fn gen_srs(k: u32) -> ParamsKZG<Bn256> {
read_or_create_srs::<G1Affine, _>(k, |k| {
ParamsKZG::<Bn256>::setup(k, ChaCha20Rng::from_seed(Default::default()))
})
}
}
#[cfg(test)]
mod tests {
use crate::halo2_proofs::halo2curves::bn256::Fr;
use num_bigint::RandomBits;
use rand::{
rngs::{OsRng, StdRng},
Rng, SeedableRng,
};
use std::ops::Shl;
use super::*;
#[test]
fn test_signed_roundtrip() {
use crate::halo2_proofs::halo2curves::bn256::Fr;
assert_eq!(fe_to_bigint(&bigint_to_fe::<Fr>(&-BigInt::one())), -BigInt::one());
}
#[test]
fn test_decompose_biguint() {
let mut rng = OsRng;
const MAX_LIMBS: u64 = 5;
for bit_len in 64..128usize {
for num_limbs in 1..=MAX_LIMBS {
for _ in 0..10_000usize {
let mut e: BigUint = rng.sample(RandomBits::new(num_limbs * bit_len as u64));
let limbs = decompose_biguint::<Fr>(&e, num_limbs as usize, bit_len);
let limbs2 = {
let mut limbs = vec![];
let mask = BigUint::one().shl(bit_len) - 1usize;
for _ in 0..num_limbs {
let limb = &e & &mask;
let mut bytes_le = limb.to_bytes_le();
bytes_le.resize(32, 0u8);
limbs.push(Fr::from_bytes(&bytes_le.try_into().unwrap()).unwrap());
e >>= bit_len;
}
limbs
};
assert_eq!(limbs, limbs2);
}
}
}
}
#[test]
fn test_decompose_u64_digits_to_limbs() {
let mut rng = OsRng;
const MAX_LIMBS: u64 = 5;
for bit_len in 0..64usize {
for num_limbs in 1..=MAX_LIMBS {
for _ in 0..10_000usize {
let mut e: BigUint = rng.sample(RandomBits::new(num_limbs * bit_len as u64));
let limbs = decompose_u64_digits_to_limbs(
e.to_u64_digits(),
num_limbs as usize,
bit_len,
);
let limbs2 = {
let mut limbs = vec![];
let mask = BigUint::one().shl(bit_len) - 1usize;
for _ in 0..num_limbs {
let limb = &e & &mask;
limbs.push(u64::try_from(limb).unwrap());
e >>= bit_len;
}
limbs
};
assert_eq!(limbs, limbs2);
}
}
}
}
#[test]
fn test_log2_ceil_zero() {
assert_eq!(log2_ceil(0), 0);
}
#[test]
fn test_get_lower_32() {
let mut rng = StdRng::seed_from_u64(0);
for _ in 0..10_000usize {
let e: u32 = rng.gen_range(0..u32::MAX);
assert_eq!(Fr::from(e as u64).get_lower_32(), e);
}
assert_eq!(Fr::from((1u64 << 32_i32) + 1).get_lower_32(), 1);
}
#[test]
fn test_get_lower_64() {
let mut rng = StdRng::seed_from_u64(0);
for _ in 0..10_000usize {
let e: u64 = rng.gen_range(0..u64::MAX);
assert_eq!(Fr::from(e).get_lower_64(), e);
}
}
}