crypto_bigint/uint/
cmp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
//! [`Uint`] comparisons.
//!
//! By default these are all constant-time and use the `subtle` crate.

use super::Uint;
use crate::{CtChoice, Limb};
use core::cmp::Ordering;
use subtle::{Choice, ConstantTimeEq, ConstantTimeGreater, ConstantTimeLess};

impl<const LIMBS: usize> Uint<LIMBS> {
    /// Return `b` if `c` is truthy, otherwise return `a`.
    #[inline]
    pub(crate) const fn ct_select(a: &Self, b: &Self, c: CtChoice) -> Self {
        let mut limbs = [Limb::ZERO; LIMBS];

        let mut i = 0;
        while i < LIMBS {
            limbs[i] = Limb::ct_select(a.limbs[i], b.limbs[i], c);
            i += 1;
        }

        Uint { limbs }
    }

    #[inline]
    pub(crate) const fn ct_swap(a: &Self, b: &Self, c: CtChoice) -> (Self, Self) {
        let new_a = Self::ct_select(a, b, c);
        let new_b = Self::ct_select(b, a, c);

        (new_a, new_b)
    }

    /// Returns the truthy value if `self`!=0 or the falsy value otherwise.
    #[inline]
    pub(crate) const fn ct_is_nonzero(&self) -> CtChoice {
        let mut b = 0;
        let mut i = 0;
        while i < LIMBS {
            b |= self.limbs[i].0;
            i += 1;
        }
        Limb(b).ct_is_nonzero()
    }

    /// Returns the truthy value if `self` is odd or the falsy value otherwise.
    pub(crate) const fn ct_is_odd(&self) -> CtChoice {
        CtChoice::from_lsb(self.limbs[0].0 & 1)
    }

    /// Returns the truthy value if `self == rhs` or the falsy value otherwise.
    #[inline]
    pub(crate) const fn ct_eq(lhs: &Self, rhs: &Self) -> CtChoice {
        let mut acc = 0;
        let mut i = 0;

        while i < LIMBS {
            acc |= lhs.limbs[i].0 ^ rhs.limbs[i].0;
            i += 1;
        }

        // acc == 0 if and only if self == rhs
        Limb(acc).ct_is_nonzero().not()
    }

    /// Returns the truthy value if `self <= rhs` and the falsy value otherwise.
    #[inline]
    pub(crate) const fn ct_lt(lhs: &Self, rhs: &Self) -> CtChoice {
        // We could use the same approach as in Limb::ct_lt(),
        // but since we have to use Uint::wrapping_sub(), which calls `sbb()`,
        // there are no savings compared to just calling `sbb()` directly.
        let (_res, borrow) = lhs.sbb(rhs, Limb::ZERO);
        CtChoice::from_mask(borrow.0)
    }

    /// Returns the truthy value if `self >= rhs` and the falsy value otherwise.
    #[inline]
    pub(crate) const fn ct_gt(lhs: &Self, rhs: &Self) -> CtChoice {
        let (_res, borrow) = rhs.sbb(lhs, Limb::ZERO);
        CtChoice::from_mask(borrow.0)
    }

    /// Returns the ordering between `self` and `rhs` as an i8.
    /// Values correspond to the Ordering enum:
    ///   -1 is Less
    ///   0 is Equal
    ///   1 is Greater
    #[inline]
    pub(crate) const fn ct_cmp(lhs: &Self, rhs: &Self) -> i8 {
        let mut i = 0;
        let mut borrow = Limb::ZERO;
        let mut diff = Limb::ZERO;

        while i < LIMBS {
            let (w, b) = rhs.limbs[i].sbb(lhs.limbs[i], borrow);
            diff = diff.bitor(w);
            borrow = b;
            i += 1;
        }
        let sgn = ((borrow.0 & 2) as i8) - 1;
        (diff.ct_is_nonzero().to_u8() as i8) * sgn
    }

    /// Returns the Ordering between `self` and `rhs` in variable time.
    pub const fn cmp_vartime(&self, rhs: &Self) -> Ordering {
        let mut i = LIMBS - 1;
        loop {
            let (val, borrow) = self.limbs[i].sbb(rhs.limbs[i], Limb::ZERO);
            if val.0 != 0 {
                return if borrow.0 != 0 {
                    Ordering::Less
                } else {
                    Ordering::Greater
                };
            }
            if i == 0 {
                return Ordering::Equal;
            }
            i -= 1;
        }
    }
}

impl<const LIMBS: usize> ConstantTimeEq for Uint<LIMBS> {
    #[inline]
    fn ct_eq(&self, other: &Self) -> Choice {
        Uint::ct_eq(self, other).into()
    }
}

impl<const LIMBS: usize> ConstantTimeGreater for Uint<LIMBS> {
    #[inline]
    fn ct_gt(&self, other: &Self) -> Choice {
        Uint::ct_gt(self, other).into()
    }
}

impl<const LIMBS: usize> ConstantTimeLess for Uint<LIMBS> {
    #[inline]
    fn ct_lt(&self, other: &Self) -> Choice {
        Uint::ct_lt(self, other).into()
    }
}

impl<const LIMBS: usize> Eq for Uint<LIMBS> {}

impl<const LIMBS: usize> Ord for Uint<LIMBS> {
    fn cmp(&self, other: &Self) -> Ordering {
        let c = Self::ct_cmp(self, other);
        match c {
            -1 => Ordering::Less,
            0 => Ordering::Equal,
            _ => Ordering::Greater,
        }
    }
}

impl<const LIMBS: usize> PartialOrd for Uint<LIMBS> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<const LIMBS: usize> PartialEq for Uint<LIMBS> {
    fn eq(&self, other: &Self) -> bool {
        self.ct_eq(other).into()
    }
}

#[cfg(test)]
mod tests {
    use crate::{Integer, Zero, U128};
    use core::cmp::Ordering;
    use subtle::{ConstantTimeEq, ConstantTimeGreater, ConstantTimeLess};

    #[test]
    fn is_zero() {
        assert!(bool::from(U128::ZERO.is_zero()));
        assert!(!bool::from(U128::ONE.is_zero()));
        assert!(!bool::from(U128::MAX.is_zero()));
    }

    #[test]
    fn is_odd() {
        assert!(!bool::from(U128::ZERO.is_odd()));
        assert!(bool::from(U128::ONE.is_odd()));
        assert!(bool::from(U128::MAX.is_odd()));
    }

    #[test]
    fn ct_eq() {
        let a = U128::ZERO;
        let b = U128::MAX;

        assert!(bool::from(a.ct_eq(&a)));
        assert!(!bool::from(a.ct_eq(&b)));
        assert!(!bool::from(b.ct_eq(&a)));
        assert!(bool::from(b.ct_eq(&b)));
    }

    #[test]
    fn ct_gt() {
        let a = U128::ZERO;
        let b = U128::ONE;
        let c = U128::MAX;

        assert!(bool::from(b.ct_gt(&a)));
        assert!(bool::from(c.ct_gt(&a)));
        assert!(bool::from(c.ct_gt(&b)));

        assert!(!bool::from(a.ct_gt(&a)));
        assert!(!bool::from(b.ct_gt(&b)));
        assert!(!bool::from(c.ct_gt(&c)));

        assert!(!bool::from(a.ct_gt(&b)));
        assert!(!bool::from(a.ct_gt(&c)));
        assert!(!bool::from(b.ct_gt(&c)));
    }

    #[test]
    fn ct_lt() {
        let a = U128::ZERO;
        let b = U128::ONE;
        let c = U128::MAX;

        assert!(bool::from(a.ct_lt(&b)));
        assert!(bool::from(a.ct_lt(&c)));
        assert!(bool::from(b.ct_lt(&c)));

        assert!(!bool::from(a.ct_lt(&a)));
        assert!(!bool::from(b.ct_lt(&b)));
        assert!(!bool::from(c.ct_lt(&c)));

        assert!(!bool::from(b.ct_lt(&a)));
        assert!(!bool::from(c.ct_lt(&a)));
        assert!(!bool::from(c.ct_lt(&b)));
    }

    #[test]
    fn cmp() {
        let a = U128::ZERO;
        let b = U128::ONE;
        let c = U128::MAX;

        assert_eq!(a.cmp(&b), Ordering::Less);
        assert_eq!(a.cmp(&c), Ordering::Less);
        assert_eq!(b.cmp(&c), Ordering::Less);

        assert_eq!(a.cmp(&a), Ordering::Equal);
        assert_eq!(b.cmp(&b), Ordering::Equal);
        assert_eq!(c.cmp(&c), Ordering::Equal);

        assert_eq!(b.cmp(&a), Ordering::Greater);
        assert_eq!(c.cmp(&a), Ordering::Greater);
        assert_eq!(c.cmp(&b), Ordering::Greater);
    }

    #[test]
    fn cmp_vartime() {
        let a = U128::ZERO;
        let b = U128::ONE;
        let c = U128::MAX;

        assert_eq!(a.cmp_vartime(&b), Ordering::Less);
        assert_eq!(a.cmp_vartime(&c), Ordering::Less);
        assert_eq!(b.cmp_vartime(&c), Ordering::Less);

        assert_eq!(a.cmp_vartime(&a), Ordering::Equal);
        assert_eq!(b.cmp_vartime(&b), Ordering::Equal);
        assert_eq!(c.cmp_vartime(&c), Ordering::Equal);

        assert_eq!(b.cmp_vartime(&a), Ordering::Greater);
        assert_eq!(c.cmp_vartime(&a), Ordering::Greater);
        assert_eq!(c.cmp_vartime(&b), Ordering::Greater);
    }
}