#![allow(clippy::needless_borrow)]
use core::cmp::Ordering;
use core::fmt;
use core::ops::{Add, Mul, MulAssign, Neg, Sub};
use rand_core::RngCore;
use ff::{Field, PrimeField, WithSmallOrderMulGroup};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
#[cfg(feature = "bits")]
use ff::{FieldBits, PrimeFieldBits};
use crate::arithmetic::{adc, mac, sbb};
use crate::{
impl_add_binop_specify_output, impl_binops_additive, impl_binops_additive_specify_output,
impl_binops_multiplicative, impl_binops_multiplicative_mixed, impl_sub_binop_specify_output,
};
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct Scalar(pub(crate) [u64; 4]);
impl fmt::Debug for Scalar {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let tmp = self.to_bytes();
write!(f, "0x")?;
for &b in tmp.iter().rev() {
write!(f, "{b:02x}")?;
}
Ok(())
}
}
impl fmt::Display for Scalar {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{self:?}")
}
}
impl From<u64> for Scalar {
fn from(val: u64) -> Scalar {
Scalar([val, 0, 0, 0]) * R2
}
}
impl ConstantTimeEq for Scalar {
fn ct_eq(&self, other: &Self) -> Choice {
self.0[0].ct_eq(&other.0[0])
& self.0[1].ct_eq(&other.0[1])
& self.0[2].ct_eq(&other.0[2])
& self.0[3].ct_eq(&other.0[3])
}
}
impl Ord for Scalar {
fn cmp(&self, other: &Self) -> Ordering {
let left = self.to_repr();
let right = other.to_repr();
left.iter()
.zip(right.iter())
.rev()
.find_map(|(left_byte, right_byte)| match left_byte.cmp(right_byte) {
Ordering::Equal => None,
res => Some(res),
})
.unwrap_or(Ordering::Equal)
}
}
impl PartialOrd for Scalar {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl ConditionallySelectable for Scalar {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Scalar([
u64::conditional_select(&a.0[0], &b.0[0], choice),
u64::conditional_select(&a.0[1], &b.0[1], choice),
u64::conditional_select(&a.0[2], &b.0[2], choice),
u64::conditional_select(&a.0[3], &b.0[3], choice),
])
}
}
const MODULUS: Scalar = Scalar([
0xffff_ffff_0000_0001,
0x53bd_a402_fffe_5bfe,
0x3339_d808_09a1_d805,
0x73ed_a753_299d_7d48,
]);
#[cfg(all(feature = "bits", not(target_pointer_width = "64")))]
const MODULUS_LIMBS_32: [u32; 8] = [
0x0000_0001,
0xffff_ffff,
0xfffe_5bfe,
0x53bd_a402,
0x09a1_d805,
0x3339_d808,
0x299d_7d48,
0x73ed_a753,
];
const MODULUS_BITS: u32 = 255;
const GENERATOR: Scalar = Scalar([
0x0000_000e_ffff_fff1,
0x17e3_63d3_0018_9c0f,
0xff9c_5787_6f84_57b0,
0x3513_3220_8fc5_a8c4,
]);
impl<'a> Neg for &'a Scalar {
type Output = Scalar;
#[inline]
fn neg(self) -> Scalar {
self.neg()
}
}
impl Neg for Scalar {
type Output = Scalar;
#[inline]
fn neg(self) -> Scalar {
-&self
}
}
impl<'a, 'b> Sub<&'b Scalar> for &'a Scalar {
type Output = Scalar;
#[inline]
fn sub(self, rhs: &'b Scalar) -> Scalar {
self.sub(rhs)
}
}
impl<'a, 'b> Add<&'b Scalar> for &'a Scalar {
type Output = Scalar;
#[inline]
fn add(self, rhs: &'b Scalar) -> Scalar {
self.add(rhs)
}
}
impl<'a, 'b> Mul<&'b Scalar> for &'a Scalar {
type Output = Scalar;
#[inline]
fn mul(self, rhs: &'b Scalar) -> Scalar {
self.mul(rhs)
}
}
impl_binops_additive!(Scalar, Scalar);
impl_binops_multiplicative!(Scalar, Scalar);
const INV: u64 = 0xffff_fffe_ffff_ffff;
const R: Scalar = Scalar([
0x0000_0001_ffff_fffe,
0x5884_b7fa_0003_4802,
0x998c_4fef_ecbc_4ff5,
0x1824_b159_acc5_056f,
]);
const R2: Scalar = Scalar([
0xc999_e990_f3f2_9c6d,
0x2b6c_edcb_8792_5c23,
0x05d3_1496_7254_398f,
0x0748_d9d9_9f59_ff11,
]);
const R3: Scalar = Scalar([
0xc62c_1807_439b_73af,
0x1b3e_0d18_8cf0_6990,
0x73d1_3c71_c7b5_f418,
0x6e2a_5bb9_c8db_33e9,
]);
const TWO_INV: Scalar = Scalar([
0x0000_0000_ffff_ffff,
0xac42_5bfd_0001_a401,
0xccc6_27f7_f65e_27fa,
0x0c12_58ac_d662_82b7,
]);
const S: u32 = 32;
const ROOT_OF_UNITY: Scalar = Scalar([
0xb9b5_8d8c_5f0e_466a,
0x5b1b_4c80_1819_d7ec,
0x0af5_3ae3_52a3_1e64,
0x5bf3_adda_19e9_b27b,
]);
const ROOT_OF_UNITY_INV: Scalar = Scalar([
0x4256_481a_dcf3_219a,
0x45f3_7b7f_96b6_cad3,
0xf9c3_f1d7_5f7a_3b27,
0x2d2f_c049_658a_fd43,
]);
const DELTA: Scalar = Scalar([
0x70e3_10d3_d146_f96a,
0x4b64_c089_19e2_99e6,
0x51e1_1418_6a8b_970d,
0x6185_d066_27c0_67cb,
]);
const ZETA: Scalar = Scalar::from_raw([0x00000000ffffffff, 0xac45a4010001a402, 0, 0]);
impl Default for Scalar {
#[inline]
fn default() -> Self {
Self::zero()
}
}
#[cfg(feature = "zeroize")]
impl zeroize::DefaultIsZeroes for Scalar {}
impl Scalar {
#[inline]
pub const fn zero() -> Scalar {
Scalar([0, 0, 0, 0])
}
#[inline]
pub const fn one() -> Scalar {
R
}
#[inline]
pub const fn double(&self) -> Scalar {
self.add(self)
}
pub fn from_bytes(bytes: &[u8; 32]) -> CtOption<Scalar> {
let mut tmp = Scalar([0, 0, 0, 0]);
tmp.0[0] = u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[0..8]).unwrap());
tmp.0[1] = u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[8..16]).unwrap());
tmp.0[2] = u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[16..24]).unwrap());
tmp.0[3] = u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[24..32]).unwrap());
let (_, borrow) = sbb(tmp.0[0], MODULUS.0[0], 0);
let (_, borrow) = sbb(tmp.0[1], MODULUS.0[1], borrow);
let (_, borrow) = sbb(tmp.0[2], MODULUS.0[2], borrow);
let (_, borrow) = sbb(tmp.0[3], MODULUS.0[3], borrow);
let is_some = (borrow as u8) & 1;
tmp *= &R2;
CtOption::new(tmp, Choice::from(is_some))
}
pub fn to_bytes(&self) -> [u8; 32] {
let tmp = Scalar::montgomery_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
let mut res = [0; 32];
res[0..8].copy_from_slice(&tmp.0[0].to_le_bytes());
res[8..16].copy_from_slice(&tmp.0[1].to_le_bytes());
res[16..24].copy_from_slice(&tmp.0[2].to_le_bytes());
res[24..32].copy_from_slice(&tmp.0[3].to_le_bytes());
res
}
pub fn from_bytes_wide(bytes: &[u8; 64]) -> Scalar {
Scalar::from_u512([
u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[0..8]).unwrap()),
u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[8..16]).unwrap()),
u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[16..24]).unwrap()),
u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[24..32]).unwrap()),
u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[32..40]).unwrap()),
u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[40..48]).unwrap()),
u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[48..56]).unwrap()),
u64::from_le_bytes(<[u8; 8]>::try_from(&bytes[56..64]).unwrap()),
])
}
fn from_u512(limbs: [u64; 8]) -> Scalar {
let d0 = Scalar([limbs[0], limbs[1], limbs[2], limbs[3]]);
let d1 = Scalar([limbs[4], limbs[5], limbs[6], limbs[7]]);
d0 * R2 + d1 * R3
}
pub const fn from_raw(val: [u64; 4]) -> Self {
(&Scalar(val)).mul(&R2)
}
#[inline]
pub const fn square(&self) -> Scalar {
let (r1, carry) = mac(0, self.0[0], self.0[1], 0);
let (r2, carry) = mac(0, self.0[0], self.0[2], carry);
let (r3, r4) = mac(0, self.0[0], self.0[3], carry);
let (r3, carry) = mac(r3, self.0[1], self.0[2], 0);
let (r4, r5) = mac(r4, self.0[1], self.0[3], carry);
let (r5, r6) = mac(r5, self.0[2], self.0[3], 0);
let r7 = r6 >> 63;
let r6 = (r6 << 1) | (r5 >> 63);
let r5 = (r5 << 1) | (r4 >> 63);
let r4 = (r4 << 1) | (r3 >> 63);
let r3 = (r3 << 1) | (r2 >> 63);
let r2 = (r2 << 1) | (r1 >> 63);
let r1 = r1 << 1;
let (r0, carry) = mac(0, self.0[0], self.0[0], 0);
let (r1, carry) = adc(0, r1, carry);
let (r2, carry) = mac(r2, self.0[1], self.0[1], carry);
let (r3, carry) = adc(0, r3, carry);
let (r4, carry) = mac(r4, self.0[2], self.0[2], carry);
let (r5, carry) = adc(0, r5, carry);
let (r6, carry) = mac(r6, self.0[3], self.0[3], carry);
let (r7, _) = adc(0, r7, carry);
Scalar::montgomery_reduce(r0, r1, r2, r3, r4, r5, r6, r7)
}
pub fn pow(&self, by: &[u64; 4]) -> Self {
let mut res = Self::one();
for e in by.iter().rev() {
for i in (0..64).rev() {
res = res.square();
let mut tmp = res;
tmp *= self;
res.conditional_assign(&tmp, (((*e >> i) & 0x1) as u8).into());
}
}
res
}
pub fn pow_vartime(&self, by: &[u64; 4]) -> Self {
let mut res = Self::one();
for e in by.iter().rev() {
for i in (0..64).rev() {
res = res.square();
if ((*e >> i) & 1) == 1 {
res.mul_assign(self);
}
}
}
res
}
pub fn invert(&self) -> CtOption<Self> {
#[inline(always)]
fn square_assign_multi(n: &mut Scalar, num_times: usize) {
for _ in 0..num_times {
*n = n.square();
}
}
let mut t0 = self.square();
let mut t1 = t0 * self;
let mut t16 = t0.square();
let mut t6 = t16.square();
let mut t5 = t6 * t0;
t0 = t6 * t16;
let mut t12 = t5 * t16;
let mut t2 = t6.square();
let mut t7 = t5 * t6;
let mut t15 = t0 * t5;
let mut t17 = t12.square();
t1 *= t17;
let mut t3 = t7 * t2;
let t8 = t1 * t17;
let t4 = t8 * t2;
let t9 = t8 * t7;
t7 = t4 * t5;
let t11 = t4 * t17;
t5 = t9 * t17;
let t14 = t7 * t15;
let t13 = t11 * t12;
t12 = t11 * t17;
t15 *= &t12;
t16 *= &t15;
t3 *= &t16;
t17 *= &t3;
t0 *= &t17;
t6 *= &t0;
t2 *= &t6;
square_assign_multi(&mut t0, 8);
t0 *= &t17;
square_assign_multi(&mut t0, 9);
t0 *= &t16;
square_assign_multi(&mut t0, 9);
t0 *= &t15;
square_assign_multi(&mut t0, 9);
t0 *= &t15;
square_assign_multi(&mut t0, 7);
t0 *= &t14;
square_assign_multi(&mut t0, 7);
t0 *= &t13;
square_assign_multi(&mut t0, 10);
t0 *= &t12;
square_assign_multi(&mut t0, 9);
t0 *= &t11;
square_assign_multi(&mut t0, 8);
t0 *= &t8;
square_assign_multi(&mut t0, 8);
t0 *= self;
square_assign_multi(&mut t0, 14);
t0 *= &t9;
square_assign_multi(&mut t0, 10);
t0 *= &t8;
square_assign_multi(&mut t0, 15);
t0 *= &t7;
square_assign_multi(&mut t0, 10);
t0 *= &t6;
square_assign_multi(&mut t0, 8);
t0 *= &t5;
square_assign_multi(&mut t0, 16);
t0 *= &t3;
square_assign_multi(&mut t0, 8);
t0 *= &t2;
square_assign_multi(&mut t0, 7);
t0 *= &t4;
square_assign_multi(&mut t0, 9);
t0 *= &t2;
square_assign_multi(&mut t0, 8);
t0 *= &t3;
square_assign_multi(&mut t0, 8);
t0 *= &t2;
square_assign_multi(&mut t0, 8);
t0 *= &t2;
square_assign_multi(&mut t0, 8);
t0 *= &t2;
square_assign_multi(&mut t0, 8);
t0 *= &t3;
square_assign_multi(&mut t0, 8);
t0 *= &t2;
square_assign_multi(&mut t0, 8);
t0 *= &t2;
square_assign_multi(&mut t0, 5);
t0 *= &t1;
square_assign_multi(&mut t0, 5);
t0 *= &t1;
CtOption::new(t0, !self.ct_eq(&Self::zero()))
}
#[inline(always)]
const fn montgomery_reduce(
r0: u64,
r1: u64,
r2: u64,
r3: u64,
r4: u64,
r5: u64,
r6: u64,
r7: u64,
) -> Self {
let k = r0.wrapping_mul(INV);
let (_, carry) = mac(r0, k, MODULUS.0[0], 0);
let (r1, carry) = mac(r1, k, MODULUS.0[1], carry);
let (r2, carry) = mac(r2, k, MODULUS.0[2], carry);
let (r3, carry) = mac(r3, k, MODULUS.0[3], carry);
let (r4, carry2) = adc(r4, 0, carry);
let k = r1.wrapping_mul(INV);
let (_, carry) = mac(r1, k, MODULUS.0[0], 0);
let (r2, carry) = mac(r2, k, MODULUS.0[1], carry);
let (r3, carry) = mac(r3, k, MODULUS.0[2], carry);
let (r4, carry) = mac(r4, k, MODULUS.0[3], carry);
let (r5, carry2) = adc(r5, carry2, carry);
let k = r2.wrapping_mul(INV);
let (_, carry) = mac(r2, k, MODULUS.0[0], 0);
let (r3, carry) = mac(r3, k, MODULUS.0[1], carry);
let (r4, carry) = mac(r4, k, MODULUS.0[2], carry);
let (r5, carry) = mac(r5, k, MODULUS.0[3], carry);
let (r6, carry2) = adc(r6, carry2, carry);
let k = r3.wrapping_mul(INV);
let (_, carry) = mac(r3, k, MODULUS.0[0], 0);
let (r4, carry) = mac(r4, k, MODULUS.0[1], carry);
let (r5, carry) = mac(r5, k, MODULUS.0[2], carry);
let (r6, carry) = mac(r6, k, MODULUS.0[3], carry);
let (r7, _) = adc(r7, carry2, carry);
(&Scalar([r4, r5, r6, r7])).sub(&MODULUS)
}
#[inline]
pub const fn mul(&self, rhs: &Self) -> Self {
let (r0, carry) = mac(0, self.0[0], rhs.0[0], 0);
let (r1, carry) = mac(0, self.0[0], rhs.0[1], carry);
let (r2, carry) = mac(0, self.0[0], rhs.0[2], carry);
let (r3, r4) = mac(0, self.0[0], rhs.0[3], carry);
let (r1, carry) = mac(r1, self.0[1], rhs.0[0], 0);
let (r2, carry) = mac(r2, self.0[1], rhs.0[1], carry);
let (r3, carry) = mac(r3, self.0[1], rhs.0[2], carry);
let (r4, r5) = mac(r4, self.0[1], rhs.0[3], carry);
let (r2, carry) = mac(r2, self.0[2], rhs.0[0], 0);
let (r3, carry) = mac(r3, self.0[2], rhs.0[1], carry);
let (r4, carry) = mac(r4, self.0[2], rhs.0[2], carry);
let (r5, r6) = mac(r5, self.0[2], rhs.0[3], carry);
let (r3, carry) = mac(r3, self.0[3], rhs.0[0], 0);
let (r4, carry) = mac(r4, self.0[3], rhs.0[1], carry);
let (r5, carry) = mac(r5, self.0[3], rhs.0[2], carry);
let (r6, r7) = mac(r6, self.0[3], rhs.0[3], carry);
Scalar::montgomery_reduce(r0, r1, r2, r3, r4, r5, r6, r7)
}
#[inline]
pub const fn sub(&self, rhs: &Self) -> Self {
let (d0, borrow) = sbb(self.0[0], rhs.0[0], 0);
let (d1, borrow) = sbb(self.0[1], rhs.0[1], borrow);
let (d2, borrow) = sbb(self.0[2], rhs.0[2], borrow);
let (d3, borrow) = sbb(self.0[3], rhs.0[3], borrow);
let (d0, carry) = adc(d0, MODULUS.0[0] & borrow, 0);
let (d1, carry) = adc(d1, MODULUS.0[1] & borrow, carry);
let (d2, carry) = adc(d2, MODULUS.0[2] & borrow, carry);
let (d3, _) = adc(d3, MODULUS.0[3] & borrow, carry);
Scalar([d0, d1, d2, d3])
}
#[inline]
pub const fn add(&self, rhs: &Self) -> Self {
let (d0, carry) = adc(self.0[0], rhs.0[0], 0);
let (d1, carry) = adc(self.0[1], rhs.0[1], carry);
let (d2, carry) = adc(self.0[2], rhs.0[2], carry);
let (d3, _) = adc(self.0[3], rhs.0[3], carry);
(&Scalar([d0, d1, d2, d3])).sub(&MODULUS)
}
#[inline]
pub const fn neg(&self) -> Self {
let (d0, borrow) = sbb(MODULUS.0[0], self.0[0], 0);
let (d1, borrow) = sbb(MODULUS.0[1], self.0[1], borrow);
let (d2, borrow) = sbb(MODULUS.0[2], self.0[2], borrow);
let (d3, _) = sbb(MODULUS.0[3], self.0[3], borrow);
let mask = (((self.0[0] | self.0[1] | self.0[2] | self.0[3]) == 0) as u64).wrapping_sub(1);
Scalar([d0 & mask, d1 & mask, d2 & mask, d3 & mask])
}
}
impl From<Scalar> for [u8; 32] {
fn from(value: Scalar) -> [u8; 32] {
value.to_bytes()
}
}
impl<'a> From<&'a Scalar> for [u8; 32] {
fn from(value: &'a Scalar) -> [u8; 32] {
value.to_bytes()
}
}
impl Field for Scalar {
const ZERO: Self = Self::zero();
const ONE: Self = Self::one();
fn random(mut rng: impl RngCore) -> Self {
let mut buf = [0; 64];
rng.fill_bytes(&mut buf);
Self::from_bytes_wide(&buf)
}
#[must_use]
fn square(&self) -> Self {
self.square()
}
#[must_use]
fn double(&self) -> Self {
self.double()
}
fn invert(&self) -> CtOption<Self> {
self.invert()
}
fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self) {
ff::helpers::sqrt_ratio_generic(num, div)
}
fn sqrt(&self) -> CtOption<Self> {
ff::helpers::sqrt_tonelli_shanks(
self,
[
0x7fff_2dff_7fff_ffff,
0x04d0_ec02_a9de_d201,
0x94ce_bea4_199c_ec04,
0x0000_0000_39f6_d3a9,
],
)
}
fn is_zero_vartime(&self) -> bool {
self.0 == Self::zero().0
}
}
impl PrimeField for Scalar {
type Repr = [u8; 32];
fn from_repr(r: Self::Repr) -> CtOption<Self> {
Self::from_bytes(&r)
}
fn to_repr(&self) -> Self::Repr {
self.to_bytes()
}
fn is_odd(&self) -> Choice {
Choice::from(self.to_bytes()[0] & 1)
}
const MODULUS: &'static str =
"0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001";
const NUM_BITS: u32 = MODULUS_BITS;
const CAPACITY: u32 = Self::NUM_BITS - 1;
const TWO_INV: Self = TWO_INV;
const MULTIPLICATIVE_GENERATOR: Self = GENERATOR;
const S: u32 = S;
const ROOT_OF_UNITY: Self = ROOT_OF_UNITY;
const ROOT_OF_UNITY_INV: Self = ROOT_OF_UNITY_INV;
const DELTA: Self = DELTA;
}
impl WithSmallOrderMulGroup<3> for Scalar {
const ZETA: Self = ZETA;
}
#[cfg(all(feature = "bits", not(target_pointer_width = "64")))]
type ReprBits = [u32; 8];
#[cfg(all(feature = "bits", target_pointer_width = "64"))]
type ReprBits = [u64; 4];
#[cfg(feature = "bits")]
impl PrimeFieldBits for Scalar {
type ReprBits = ReprBits;
fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
let bytes = self.to_bytes();
#[cfg(not(target_pointer_width = "64"))]
let limbs = [
u32::from_le_bytes(bytes[0..4].try_into().unwrap()),
u32::from_le_bytes(bytes[4..8].try_into().unwrap()),
u32::from_le_bytes(bytes[8..12].try_into().unwrap()),
u32::from_le_bytes(bytes[12..16].try_into().unwrap()),
u32::from_le_bytes(bytes[16..20].try_into().unwrap()),
u32::from_le_bytes(bytes[20..24].try_into().unwrap()),
u32::from_le_bytes(bytes[24..28].try_into().unwrap()),
u32::from_le_bytes(bytes[28..32].try_into().unwrap()),
];
#[cfg(target_pointer_width = "64")]
let limbs = [
u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
u64::from_le_bytes(bytes[8..16].try_into().unwrap()),
u64::from_le_bytes(bytes[16..24].try_into().unwrap()),
u64::from_le_bytes(bytes[24..32].try_into().unwrap()),
];
FieldBits::new(limbs)
}
fn char_le_bits() -> FieldBits<Self::ReprBits> {
#[cfg(not(target_pointer_width = "64"))]
{
FieldBits::new(MODULUS_LIMBS_32)
}
#[cfg(target_pointer_width = "64")]
FieldBits::new(MODULUS.0)
}
}
impl<T> core::iter::Sum<T> for Scalar
where
T: core::borrow::Borrow<Scalar>,
{
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = T>,
{
iter.fold(Self::zero(), |acc, item| acc + item.borrow())
}
}
impl<T> core::iter::Product<T> for Scalar
where
T: core::borrow::Borrow<Scalar>,
{
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = T>,
{
iter.fold(Self::one(), |acc, item| acc * item.borrow())
}
}
impl From<[u64; 4]> for Scalar {
fn from(digits: [u64; 4]) -> Self {
Self::from_raw(digits)
}
}
impl ff::FromUniformBytes<64> for Scalar {
fn from_uniform_bytes(bytes: &[u8; 64]) -> Self {
Self::from_u512([
u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
u64::from_le_bytes(bytes[8..16].try_into().unwrap()),
u64::from_le_bytes(bytes[16..24].try_into().unwrap()),
u64::from_le_bytes(bytes[24..32].try_into().unwrap()),
u64::from_le_bytes(bytes[32..40].try_into().unwrap()),
u64::from_le_bytes(bytes[40..48].try_into().unwrap()),
u64::from_le_bytes(bytes[48..56].try_into().unwrap()),
u64::from_le_bytes(bytes[56..64].try_into().unwrap()),
])
}
}
impl From<bool> for Scalar {
fn from(bit: bool) -> Scalar {
if bit {
Scalar::one()
} else {
Scalar::zero()
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::ops::AddAssign;
#[test]
fn test_constants() {
assert_eq!(
Scalar::MODULUS,
"0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001",
);
assert_eq!(Scalar::from(2) * Scalar::TWO_INV, Scalar::ONE);
assert_eq!(
Scalar::ROOT_OF_UNITY * Scalar::ROOT_OF_UNITY_INV,
Scalar::ONE,
);
assert_eq!(
Scalar::ROOT_OF_UNITY.pow(&[1u64 << Scalar::S, 0, 0, 0]),
Scalar::ONE,
);
assert_eq!(
Scalar::DELTA.pow(&[
0xfffe_5bfe_ffff_ffff,
0x09a1_d805_53bd_a402,
0x299d_7d48_3339_d808,
0x0000_0000_73ed_a753,
]),
Scalar::ONE,
);
}
#[test]
fn test_inv() {
let mut inv = 1u64;
for _ in 0..63 {
inv = inv.wrapping_mul(inv);
inv = inv.wrapping_mul(MODULUS.0[0]);
}
inv = inv.wrapping_neg();
assert_eq!(inv, INV);
}
#[cfg(feature = "std")]
#[test]
fn test_debug() {
assert_eq!(
format!("{:?}", Scalar::zero()),
"0x0000000000000000000000000000000000000000000000000000000000000000"
);
assert_eq!(
format!("{:?}", Scalar::one()),
"0x0000000000000000000000000000000000000000000000000000000000000001"
);
assert_eq!(
format!("{:?}", R2),
"0x1824b159acc5056f998c4fefecbc4ff55884b7fa0003480200000001fffffffe"
);
}
#[test]
fn test_equality() {
assert_eq!(Scalar::zero(), Scalar::zero());
assert_eq!(Scalar::one(), Scalar::one());
assert_eq!(R2, R2);
assert!(Scalar::zero() != Scalar::one());
assert!(Scalar::one() != R2);
}
#[test]
fn test_to_bytes() {
assert_eq!(
Scalar::zero().to_bytes(),
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0
]
);
assert_eq!(
Scalar::one().to_bytes(),
[
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0
]
);
assert_eq!(
R2.to_bytes(),
[
254, 255, 255, 255, 1, 0, 0, 0, 2, 72, 3, 0, 250, 183, 132, 88, 245, 79, 188, 236,
239, 79, 140, 153, 111, 5, 197, 172, 89, 177, 36, 24
]
);
assert_eq!(
(-&Scalar::one()).to_bytes(),
[
0, 0, 0, 0, 255, 255, 255, 255, 254, 91, 254, 255, 2, 164, 189, 83, 5, 216, 161, 9,
8, 216, 57, 51, 72, 125, 157, 41, 83, 167, 237, 115
]
);
}
#[test]
fn test_from_bytes() {
assert_eq!(
Scalar::from_bytes(&[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0
])
.unwrap(),
Scalar::zero()
);
assert_eq!(
Scalar::from_bytes(&[
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0
])
.unwrap(),
Scalar::one()
);
assert_eq!(
Scalar::from_bytes(&[
254, 255, 255, 255, 1, 0, 0, 0, 2, 72, 3, 0, 250, 183, 132, 88, 245, 79, 188, 236,
239, 79, 140, 153, 111, 5, 197, 172, 89, 177, 36, 24
])
.unwrap(),
R2
);
assert!(bool::from(
Scalar::from_bytes(&[
0, 0, 0, 0, 255, 255, 255, 255, 254, 91, 254, 255, 2, 164, 189, 83, 5, 216, 161, 9,
8, 216, 57, 51, 72, 125, 157, 41, 83, 167, 237, 115
])
.is_some()
));
assert!(bool::from(
Scalar::from_bytes(&[
1, 0, 0, 0, 255, 255, 255, 255, 254, 91, 254, 255, 2, 164, 189, 83, 5, 216, 161, 9,
8, 216, 57, 51, 72, 125, 157, 41, 83, 167, 237, 115
])
.is_none()
));
assert!(bool::from(
Scalar::from_bytes(&[
2, 0, 0, 0, 255, 255, 255, 255, 254, 91, 254, 255, 2, 164, 189, 83, 5, 216, 161, 9,
8, 216, 57, 51, 72, 125, 157, 41, 83, 167, 237, 115
])
.is_none()
));
assert!(bool::from(
Scalar::from_bytes(&[
1, 0, 0, 0, 255, 255, 255, 255, 254, 91, 254, 255, 2, 164, 189, 83, 5, 216, 161, 9,
8, 216, 58, 51, 72, 125, 157, 41, 83, 167, 237, 115
])
.is_none()
));
assert!(bool::from(
Scalar::from_bytes(&[
1, 0, 0, 0, 255, 255, 255, 255, 254, 91, 254, 255, 2, 164, 189, 83, 5, 216, 161, 9,
8, 216, 57, 51, 72, 125, 157, 41, 83, 167, 237, 116
])
.is_none()
));
}
#[test]
fn test_from_u512_zero() {
assert_eq!(
Scalar::zero(),
Scalar::from_u512([
MODULUS.0[0],
MODULUS.0[1],
MODULUS.0[2],
MODULUS.0[3],
0,
0,
0,
0
])
);
}
#[test]
fn test_from_u512_r() {
assert_eq!(R, Scalar::from_u512([1, 0, 0, 0, 0, 0, 0, 0]));
}
#[test]
fn test_from_u512_r2() {
assert_eq!(R2, Scalar::from_u512([0, 0, 0, 0, 1, 0, 0, 0]));
}
#[test]
fn test_from_u512_max() {
let max_u64 = 0xffff_ffff_ffff_ffff;
assert_eq!(
R3 - R,
Scalar::from_u512([
max_u64, max_u64, max_u64, max_u64, max_u64, max_u64, max_u64, max_u64
])
);
}
#[test]
fn test_from_bytes_wide_r2() {
assert_eq!(
R2,
Scalar::from_bytes_wide(&[
254, 255, 255, 255, 1, 0, 0, 0, 2, 72, 3, 0, 250, 183, 132, 88, 245, 79, 188, 236,
239, 79, 140, 153, 111, 5, 197, 172, 89, 177, 36, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
])
);
}
#[test]
fn test_from_bytes_wide_negative_one() {
assert_eq!(
-&Scalar::one(),
Scalar::from_bytes_wide(&[
0, 0, 0, 0, 255, 255, 255, 255, 254, 91, 254, 255, 2, 164, 189, 83, 5, 216, 161, 9,
8, 216, 57, 51, 72, 125, 157, 41, 83, 167, 237, 115, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
])
);
}
#[test]
fn test_from_bytes_wide_maximum() {
assert_eq!(
Scalar([
0xc62c_1805_439b_73b1,
0xc2b9_551e_8ced_218e,
0xda44_ec81_daf9_a422,
0x5605_aa60_1c16_2e79,
]),
Scalar::from_bytes_wide(&[0xff; 64])
);
}
#[test]
fn test_zero() {
assert_eq!(Scalar::zero(), -&Scalar::zero());
assert_eq!(Scalar::zero(), Scalar::zero() + Scalar::zero());
assert_eq!(Scalar::zero(), Scalar::zero() - Scalar::zero());
assert_eq!(Scalar::zero(), Scalar::zero() * Scalar::zero());
}
#[cfg(test)]
const LARGEST: Scalar = Scalar([
0xffff_ffff_0000_0000,
0x53bd_a402_fffe_5bfe,
0x3339_d808_09a1_d805,
0x73ed_a753_299d_7d48,
]);
#[test]
fn test_addition() {
let mut tmp = LARGEST;
tmp += &LARGEST;
assert_eq!(
tmp,
Scalar([
0xffff_fffe_ffff_ffff,
0x53bd_a402_fffe_5bfe,
0x3339_d808_09a1_d805,
0x73ed_a753_299d_7d48,
])
);
let mut tmp = LARGEST;
tmp += &Scalar([1, 0, 0, 0]);
assert_eq!(tmp, Scalar::zero());
}
#[test]
fn test_negation() {
let tmp = -&LARGEST;
assert_eq!(tmp, Scalar([1, 0, 0, 0]));
let tmp = -&Scalar::zero();
assert_eq!(tmp, Scalar::zero());
let tmp = -&Scalar([1, 0, 0, 0]);
assert_eq!(tmp, LARGEST);
}
#[test]
fn test_subtraction() {
let mut tmp = LARGEST;
tmp -= &LARGEST;
assert_eq!(tmp, Scalar::zero());
let mut tmp = Scalar::zero();
tmp -= &LARGEST;
let mut tmp2 = MODULUS;
tmp2 -= &LARGEST;
assert_eq!(tmp, tmp2);
}
#[test]
fn test_multiplication() {
let mut cur = LARGEST;
for _ in 0..100 {
let mut tmp = cur;
tmp *= &cur;
let mut tmp2 = Scalar::zero();
for b in cur
.to_bytes()
.iter()
.rev()
.flat_map(|byte| (0..8).rev().map(move |i| ((byte >> i) & 1u8) == 1u8))
{
let tmp3 = tmp2;
tmp2.add_assign(&tmp3);
if b {
tmp2.add_assign(&cur);
}
}
assert_eq!(tmp, tmp2);
cur.add_assign(&LARGEST);
}
}
#[test]
fn test_squaring() {
let mut cur = LARGEST;
for _ in 0..100 {
let mut tmp = cur;
tmp = tmp.square();
let mut tmp2 = Scalar::zero();
for b in cur
.to_bytes()
.iter()
.rev()
.flat_map(|byte| (0..8).rev().map(move |i| ((byte >> i) & 1u8) == 1u8))
{
let tmp3 = tmp2;
tmp2.add_assign(&tmp3);
if b {
tmp2.add_assign(&cur);
}
}
assert_eq!(tmp, tmp2);
cur.add_assign(&LARGEST);
}
}
#[test]
fn test_inversion() {
assert!(bool::from(Scalar::zero().invert().is_none()));
assert_eq!(Scalar::one().invert().unwrap(), Scalar::one());
assert_eq!((-&Scalar::one()).invert().unwrap(), -&Scalar::one());
let mut tmp = R2;
for _ in 0..100 {
let mut tmp2 = tmp.invert().unwrap();
tmp2.mul_assign(&tmp);
assert_eq!(tmp2, Scalar::one());
tmp.add_assign(&R2);
}
}
#[test]
fn test_invert_is_pow() {
let q_minus_2 = [
0xffff_fffe_ffff_ffff,
0x53bd_a402_fffe_5bfe,
0x3339_d808_09a1_d805,
0x73ed_a753_299d_7d48,
];
let mut r1 = R;
let mut r2 = R;
let mut r3 = R;
for _ in 0..100 {
r1 = r1.invert().unwrap();
r2 = r2.pow_vartime(&q_minus_2);
r3 = r3.pow(&q_minus_2);
assert_eq!(r1, r2);
assert_eq!(r2, r3);
r1.add_assign(&R);
r2 = r1;
r3 = r1;
}
}
#[test]
fn test_sqrt() {
{
assert_eq!(Scalar::zero().sqrt().unwrap(), Scalar::zero());
}
let mut square = Scalar([
0x46cd_85a5_f273_077e,
0x1d30_c47d_d68f_c735,
0x77f6_56f6_0bec_a0eb,
0x494a_a01b_df32_468d,
]);
let mut none_count = 0;
for _ in 0..100 {
let square_root = square.sqrt();
if bool::from(square_root.is_none()) {
none_count += 1;
} else {
assert_eq!(square_root.unwrap() * square_root.unwrap(), square);
}
square -= Scalar::one();
}
assert_eq!(49, none_count);
}
#[test]
fn test_from_raw() {
assert_eq!(
Scalar::from_raw([
0x0001_ffff_fffd,
0x5884_b7fa_0003_4802,
0x998c_4fef_ecbc_4ff5,
0x1824_b159_acc5_056f,
]),
Scalar::from_raw([0xffff_ffff_ffff_ffff; 4])
);
assert_eq!(Scalar::from_raw(MODULUS.0), Scalar::zero());
assert_eq!(Scalar::from_raw([1, 0, 0, 0]), R);
}
#[test]
fn test_double() {
let a = Scalar::from_raw([
0x1fff_3231_233f_fffd,
0x4884_b7fa_0003_4802,
0x998c_4fef_ecbc_4ff3,
0x1824_b159_acc5_0562,
]);
assert_eq!(a.double(), a + a);
}
#[cfg(feature = "zeroize")]
#[test]
fn test_zeroize() {
use zeroize::Zeroize;
let mut a = Scalar::from_raw([
0x1fff_3231_233f_fffd,
0x4884_b7fa_0003_4802,
0x998c_4fef_ecbc_4ff3,
0x1824_b159_acc5_0562,
]);
a.zeroize();
assert!(bool::from(a.is_zero()));
}
}