blake3/lib.rs
1//! The official Rust implementation of the [BLAKE3] cryptographic hash
2//! function.
3//!
4//! # Examples
5//!
6//! ```
7//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
8//! // Hash an input all at once.
9//! let hash1 = blake3::hash(b"foobarbaz");
10//!
11//! // Hash an input incrementally.
12//! let mut hasher = blake3::Hasher::new();
13//! hasher.update(b"foo");
14//! hasher.update(b"bar");
15//! hasher.update(b"baz");
16//! let hash2 = hasher.finalize();
17//! assert_eq!(hash1, hash2);
18//!
19//! // Extended output. OutputReader also implements Read and Seek.
20//! # #[cfg(feature = "std")] {
21//! let mut output = [0; 1000];
22//! let mut output_reader = hasher.finalize_xof();
23//! output_reader.fill(&mut output);
24//! assert_eq!(hash1, output[..32]);
25//! # }
26//!
27//! // Print a hash as hex.
28//! println!("{}", hash1);
29//! # Ok(())
30//! # }
31//! ```
32//!
33//! # Cargo Features
34//!
35//! The `std` feature (the only feature enabled by default) is required for
36//! implementations of the [`Write`] and [`Seek`] traits, the
37//! [`update_reader`](Hasher::update_reader) helper method, and runtime CPU
38//! feature detection on x86. If this feature is disabled, the only way to use
39//! the x86 SIMD implementations is to enable the corresponding instruction sets
40//! globally, with e.g. `RUSTFLAGS="-C target-cpu=native"`. The resulting binary
41//! will not be portable to other machines.
42//!
43//! The `rayon` feature (disabled by default, but enabled for [docs.rs]) adds
44//! the [`update_rayon`](Hasher::update_rayon) and (in combination with `mmap`
45//! below) [`update_mmap_rayon`](Hasher::update_mmap_rayon) methods, for
46//! multithreaded hashing. However, even if this feature is enabled, all other
47//! APIs remain single-threaded.
48//!
49//! The `mmap` feature (disabled by default, but enabled for [docs.rs]) adds the
50//! [`update_mmap`](Hasher::update_mmap) and (in combination with `rayon` above)
51//! [`update_mmap_rayon`](Hasher::update_mmap_rayon) helper methods for
52//! memory-mapped IO.
53//!
54//! The `zeroize` feature (disabled by default, but enabled for [docs.rs])
55//! implements
56//! [`Zeroize`](https://docs.rs/zeroize/latest/zeroize/trait.Zeroize.html) for
57//! this crate's types.
58//!
59//! The `serde` feature (disabled by default, but enabled for [docs.rs]) implements
60//! [`serde::Serialize`](https://docs.rs/serde/latest/serde/trait.Serialize.html) and
61//! [`serde::Deserialize`](https://docs.rs/serde/latest/serde/trait.Deserialize.html)
62//! for [`Hash`](struct@Hash).
63//!
64//! The NEON implementation is enabled by default for AArch64 but requires the
65//! `neon` feature for other ARM targets. Not all ARMv7 CPUs support NEON, and
66//! enabling this feature will produce a binary that's not portable to CPUs
67//! without NEON support.
68//!
69//! The `traits-preview` feature enables implementations of traits from the
70//! RustCrypto [`digest`] crate, and re-exports that crate as `traits::digest`.
71//! However, the traits aren't stable, and they're expected to change in
72//! incompatible ways before that crate reaches 1.0. For that reason, this crate
73//! makes no SemVer guarantees for this feature, and callers who use it should
74//! expect breaking changes between patch versions. (The "-preview" feature name
75//! follows the conventions of the RustCrypto [`signature`] crate.)
76//!
77//! [`Hasher::update_rayon`]: struct.Hasher.html#method.update_rayon
78//! [BLAKE3]: https://blake3.io
79//! [Rayon]: https://github.com/rayon-rs/rayon
80//! [docs.rs]: https://docs.rs/
81//! [`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html
82//! [`Seek`]: https://doc.rust-lang.org/std/io/trait.Seek.html
83//! [`digest`]: https://crates.io/crates/digest
84//! [`signature`]: https://crates.io/crates/signature
85
86#![cfg_attr(not(feature = "std"), no_std)]
87
88#[cfg(test)]
89mod test;
90
91// The guts module is for incremental use cases like the `bao` crate that need
92// to explicitly compute chunk and parent chaining values. It is semi-stable
93// and likely to keep working, but largely undocumented and not intended for
94// widespread use.
95#[doc(hidden)]
96pub mod guts;
97
98/// Undocumented and unstable, for benchmarks only.
99#[doc(hidden)]
100pub mod platform;
101
102// Platform-specific implementations of the compression function. These
103// BLAKE3-specific cfg flags are set in build.rs.
104#[cfg(blake3_avx2_rust)]
105#[path = "rust_avx2.rs"]
106mod avx2;
107#[cfg(blake3_avx2_ffi)]
108#[path = "ffi_avx2.rs"]
109mod avx2;
110#[cfg(blake3_avx512_ffi)]
111#[path = "ffi_avx512.rs"]
112mod avx512;
113#[cfg(blake3_neon)]
114#[path = "ffi_neon.rs"]
115mod neon;
116mod portable;
117#[cfg(blake3_sse2_rust)]
118#[path = "rust_sse2.rs"]
119mod sse2;
120#[cfg(blake3_sse2_ffi)]
121#[path = "ffi_sse2.rs"]
122mod sse2;
123#[cfg(blake3_sse41_rust)]
124#[path = "rust_sse41.rs"]
125mod sse41;
126#[cfg(blake3_sse41_ffi)]
127#[path = "ffi_sse41.rs"]
128mod sse41;
129
130#[cfg(feature = "traits-preview")]
131pub mod traits;
132
133mod io;
134mod join;
135
136use arrayref::{array_mut_ref, array_ref};
137use arrayvec::{ArrayString, ArrayVec};
138use core::cmp;
139use core::fmt;
140use platform::{Platform, MAX_SIMD_DEGREE, MAX_SIMD_DEGREE_OR_2};
141#[cfg(feature = "zeroize")]
142use zeroize::Zeroize;
143
144/// The number of bytes in a [`Hash`](struct.Hash.html), 32.
145pub const OUT_LEN: usize = 32;
146
147/// The number of bytes in a key, 32.
148pub const KEY_LEN: usize = 32;
149
150const MAX_DEPTH: usize = 54; // 2^54 * CHUNK_LEN = 2^64
151use guts::{BLOCK_LEN, CHUNK_LEN};
152
153// While iterating the compression function within a chunk, the CV is
154// represented as words, to avoid doing two extra endianness conversions for
155// each compression in the portable implementation. But the hash_many interface
156// needs to hash both input bytes and parent nodes, so its better for its
157// output CVs to be represented as bytes.
158type CVWords = [u32; 8];
159type CVBytes = [u8; 32]; // little-endian
160
161const IV: &CVWords = &[
162 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
163];
164
165const MSG_SCHEDULE: [[usize; 16]; 7] = [
166 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
167 [2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8],
168 [3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1],
169 [10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6],
170 [12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4],
171 [9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7],
172 [11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13],
173];
174
175// These are the internal flags that we use to domain separate root/non-root,
176// chunk/parent, and chunk beginning/middle/end. These get set at the high end
177// of the block flags word in the compression function, so their values start
178// high and go down.
179const CHUNK_START: u8 = 1 << 0;
180const CHUNK_END: u8 = 1 << 1;
181const PARENT: u8 = 1 << 2;
182const ROOT: u8 = 1 << 3;
183const KEYED_HASH: u8 = 1 << 4;
184const DERIVE_KEY_CONTEXT: u8 = 1 << 5;
185const DERIVE_KEY_MATERIAL: u8 = 1 << 6;
186
187#[inline]
188fn counter_low(counter: u64) -> u32 {
189 counter as u32
190}
191
192#[inline]
193fn counter_high(counter: u64) -> u32 {
194 (counter >> 32) as u32
195}
196
197/// An output of the default size, 32 bytes, which provides constant-time
198/// equality checking.
199///
200/// `Hash` implements [`From`] and [`Into`] for `[u8; 32]`, and it provides
201/// [`from_bytes`] and [`as_bytes`] for explicit conversions between itself and
202/// `[u8; 32]`. However, byte arrays and slices don't provide constant-time
203/// equality checking, which is often a security requirement in software that
204/// handles private data. `Hash` doesn't implement [`Deref`] or [`AsRef`], to
205/// avoid situations where a type conversion happens implicitly and the
206/// constant-time property is accidentally lost.
207///
208/// `Hash` provides the [`to_hex`] and [`from_hex`] methods for converting to
209/// and from hexadecimal. It also implements [`Display`] and [`FromStr`].
210///
211/// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html
212/// [`Into`]: https://doc.rust-lang.org/std/convert/trait.Into.html
213/// [`as_bytes`]: #method.as_bytes
214/// [`from_bytes`]: #method.from_bytes
215/// [`Deref`]: https://doc.rust-lang.org/stable/std/ops/trait.Deref.html
216/// [`AsRef`]: https://doc.rust-lang.org/std/convert/trait.AsRef.html
217/// [`to_hex`]: #method.to_hex
218/// [`from_hex`]: #method.from_hex
219/// [`Display`]: https://doc.rust-lang.org/std/fmt/trait.Display.html
220/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
221#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
222#[derive(Clone, Copy, Hash)]
223pub struct Hash([u8; OUT_LEN]);
224
225impl Hash {
226 /// The raw bytes of the `Hash`. Note that byte arrays don't provide
227 /// constant-time equality checking, so if you need to compare hashes,
228 /// prefer the `Hash` type.
229 #[inline]
230 pub const fn as_bytes(&self) -> &[u8; OUT_LEN] {
231 &self.0
232 }
233
234 /// Create a `Hash` from its raw bytes representation.
235 pub const fn from_bytes(bytes: [u8; OUT_LEN]) -> Self {
236 Self(bytes)
237 }
238
239 /// Create a `Hash` from its raw bytes representation as a slice.
240 ///
241 /// Returns an error if the slice is not exactly 32 bytes long.
242 pub fn from_slice(bytes: &[u8]) -> Result<Self, core::array::TryFromSliceError> {
243 Ok(Self::from_bytes(bytes.try_into()?))
244 }
245
246 /// Encode a `Hash` in lowercase hexadecimal.
247 ///
248 /// The returned [`ArrayString`] is a fixed size and doesn't allocate memory
249 /// on the heap. Note that [`ArrayString`] doesn't provide constant-time
250 /// equality checking, so if you need to compare hashes, prefer the `Hash`
251 /// type.
252 ///
253 /// [`ArrayString`]: https://docs.rs/arrayvec/0.5.1/arrayvec/struct.ArrayString.html
254 pub fn to_hex(&self) -> ArrayString<{ 2 * OUT_LEN }> {
255 let mut s = ArrayString::new();
256 let table = b"0123456789abcdef";
257 for &b in self.0.iter() {
258 s.push(table[(b >> 4) as usize] as char);
259 s.push(table[(b & 0xf) as usize] as char);
260 }
261 s
262 }
263
264 /// Decode a `Hash` from hexadecimal. Both uppercase and lowercase ASCII
265 /// bytes are supported.
266 ///
267 /// Any byte outside the ranges `'0'...'9'`, `'a'...'f'`, and `'A'...'F'`
268 /// results in an error. An input length other than 64 also results in an
269 /// error.
270 ///
271 /// Note that `Hash` also implements `FromStr`, so `Hash::from_hex("...")`
272 /// is equivalent to `"...".parse()`.
273 pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Self, HexError> {
274 fn hex_val(byte: u8) -> Result<u8, HexError> {
275 match byte {
276 b'A'..=b'F' => Ok(byte - b'A' + 10),
277 b'a'..=b'f' => Ok(byte - b'a' + 10),
278 b'0'..=b'9' => Ok(byte - b'0'),
279 _ => Err(HexError(HexErrorInner::InvalidByte(byte))),
280 }
281 }
282 let hex_bytes: &[u8] = hex.as_ref();
283 if hex_bytes.len() != OUT_LEN * 2 {
284 return Err(HexError(HexErrorInner::InvalidLen(hex_bytes.len())));
285 }
286 let mut hash_bytes: [u8; OUT_LEN] = [0; OUT_LEN];
287 for i in 0..OUT_LEN {
288 hash_bytes[i] = 16 * hex_val(hex_bytes[2 * i])? + hex_val(hex_bytes[2 * i + 1])?;
289 }
290 Ok(Hash::from(hash_bytes))
291 }
292}
293
294impl From<[u8; OUT_LEN]> for Hash {
295 #[inline]
296 fn from(bytes: [u8; OUT_LEN]) -> Self {
297 Self::from_bytes(bytes)
298 }
299}
300
301impl From<Hash> for [u8; OUT_LEN] {
302 #[inline]
303 fn from(hash: Hash) -> Self {
304 hash.0
305 }
306}
307
308impl core::str::FromStr for Hash {
309 type Err = HexError;
310
311 fn from_str(s: &str) -> Result<Self, Self::Err> {
312 Hash::from_hex(s)
313 }
314}
315
316#[cfg(feature = "zeroize")]
317impl Zeroize for Hash {
318 fn zeroize(&mut self) {
319 // Destructuring to trigger compile error as a reminder to update this impl.
320 let Self(bytes) = self;
321 bytes.zeroize();
322 }
323}
324
325/// This implementation is constant-time.
326impl PartialEq for Hash {
327 #[inline]
328 fn eq(&self, other: &Hash) -> bool {
329 constant_time_eq::constant_time_eq_32(&self.0, &other.0)
330 }
331}
332
333/// This implementation is constant-time.
334impl PartialEq<[u8; OUT_LEN]> for Hash {
335 #[inline]
336 fn eq(&self, other: &[u8; OUT_LEN]) -> bool {
337 constant_time_eq::constant_time_eq_32(&self.0, other)
338 }
339}
340
341/// This implementation is constant-time if the target is 32 bytes long.
342impl PartialEq<[u8]> for Hash {
343 #[inline]
344 fn eq(&self, other: &[u8]) -> bool {
345 constant_time_eq::constant_time_eq(&self.0, other)
346 }
347}
348
349impl Eq for Hash {}
350
351impl fmt::Display for Hash {
352 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
353 // Formatting field as `&str` to reduce code size since the `Debug`
354 // dynamic dispatch table for `&str` is likely needed elsewhere already,
355 // but that for `ArrayString<[u8; 64]>` is not.
356 let hex = self.to_hex();
357 let hex: &str = hex.as_str();
358
359 f.write_str(hex)
360 }
361}
362
363impl fmt::Debug for Hash {
364 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
365 // Formatting field as `&str` to reduce code size since the `Debug`
366 // dynamic dispatch table for `&str` is likely needed elsewhere already,
367 // but that for `ArrayString<[u8; 64]>` is not.
368 let hex = self.to_hex();
369 let hex: &str = hex.as_str();
370
371 f.debug_tuple("Hash").field(&hex).finish()
372 }
373}
374
375/// The error type for [`Hash::from_hex`].
376///
377/// The `.to_string()` representation of this error currently distinguishes between bad length
378/// errors and bad character errors. This is to help with logging and debugging, but it isn't a
379/// stable API detail, and it may change at any time.
380#[derive(Clone, Debug)]
381pub struct HexError(HexErrorInner);
382
383#[derive(Clone, Debug)]
384enum HexErrorInner {
385 InvalidByte(u8),
386 InvalidLen(usize),
387}
388
389impl fmt::Display for HexError {
390 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
391 match self.0 {
392 HexErrorInner::InvalidByte(byte) => {
393 if byte < 128 {
394 write!(f, "invalid hex character: {:?}", byte as char)
395 } else {
396 write!(f, "invalid hex character: 0x{:x}", byte)
397 }
398 }
399 HexErrorInner::InvalidLen(len) => {
400 write!(f, "expected 64 hex bytes, received {}", len)
401 }
402 }
403 }
404}
405
406#[cfg(feature = "std")]
407impl std::error::Error for HexError {}
408
409// Each chunk or parent node can produce either a 32-byte chaining value or, by
410// setting the ROOT flag, any number of final output bytes. The Output struct
411// captures the state just prior to choosing between those two possibilities.
412#[derive(Clone)]
413struct Output {
414 input_chaining_value: CVWords,
415 block: [u8; 64],
416 block_len: u8,
417 counter: u64,
418 flags: u8,
419 platform: Platform,
420}
421
422impl Output {
423 fn chaining_value(&self) -> CVBytes {
424 let mut cv = self.input_chaining_value;
425 self.platform.compress_in_place(
426 &mut cv,
427 &self.block,
428 self.block_len,
429 self.counter,
430 self.flags,
431 );
432 platform::le_bytes_from_words_32(&cv)
433 }
434
435 fn root_hash(&self) -> Hash {
436 debug_assert_eq!(self.counter, 0);
437 let mut cv = self.input_chaining_value;
438 self.platform
439 .compress_in_place(&mut cv, &self.block, self.block_len, 0, self.flags | ROOT);
440 Hash(platform::le_bytes_from_words_32(&cv))
441 }
442
443 fn root_output_block(&self) -> [u8; 2 * OUT_LEN] {
444 self.platform.compress_xof(
445 &self.input_chaining_value,
446 &self.block,
447 self.block_len,
448 self.counter,
449 self.flags | ROOT,
450 )
451 }
452}
453
454#[cfg(feature = "zeroize")]
455impl Zeroize for Output {
456 fn zeroize(&mut self) {
457 // Destructuring to trigger compile error as a reminder to update this impl.
458 let Self {
459 input_chaining_value,
460 block,
461 block_len,
462 counter,
463 flags,
464 platform: _,
465 } = self;
466
467 input_chaining_value.zeroize();
468 block.zeroize();
469 block_len.zeroize();
470 counter.zeroize();
471 flags.zeroize();
472 }
473}
474
475#[derive(Clone)]
476struct ChunkState {
477 cv: CVWords,
478 chunk_counter: u64,
479 buf: [u8; BLOCK_LEN],
480 buf_len: u8,
481 blocks_compressed: u8,
482 flags: u8,
483 platform: Platform,
484}
485
486impl ChunkState {
487 fn new(key: &CVWords, chunk_counter: u64, flags: u8, platform: Platform) -> Self {
488 Self {
489 cv: *key,
490 chunk_counter,
491 buf: [0; BLOCK_LEN],
492 buf_len: 0,
493 blocks_compressed: 0,
494 flags,
495 platform,
496 }
497 }
498
499 fn len(&self) -> usize {
500 BLOCK_LEN * self.blocks_compressed as usize + self.buf_len as usize
501 }
502
503 fn fill_buf(&mut self, input: &mut &[u8]) {
504 let want = BLOCK_LEN - self.buf_len as usize;
505 let take = cmp::min(want, input.len());
506 self.buf[self.buf_len as usize..][..take].copy_from_slice(&input[..take]);
507 self.buf_len += take as u8;
508 *input = &input[take..];
509 }
510
511 fn start_flag(&self) -> u8 {
512 if self.blocks_compressed == 0 {
513 CHUNK_START
514 } else {
515 0
516 }
517 }
518
519 // Try to avoid buffering as much as possible, by compressing directly from
520 // the input slice when full blocks are available.
521 fn update(&mut self, mut input: &[u8]) -> &mut Self {
522 if self.buf_len > 0 {
523 self.fill_buf(&mut input);
524 if !input.is_empty() {
525 debug_assert_eq!(self.buf_len as usize, BLOCK_LEN);
526 let block_flags = self.flags | self.start_flag(); // borrowck
527 self.platform.compress_in_place(
528 &mut self.cv,
529 &self.buf,
530 BLOCK_LEN as u8,
531 self.chunk_counter,
532 block_flags,
533 );
534 self.buf_len = 0;
535 self.buf = [0; BLOCK_LEN];
536 self.blocks_compressed += 1;
537 }
538 }
539
540 while input.len() > BLOCK_LEN {
541 debug_assert_eq!(self.buf_len, 0);
542 let block_flags = self.flags | self.start_flag(); // borrowck
543 self.platform.compress_in_place(
544 &mut self.cv,
545 array_ref!(input, 0, BLOCK_LEN),
546 BLOCK_LEN as u8,
547 self.chunk_counter,
548 block_flags,
549 );
550 self.blocks_compressed += 1;
551 input = &input[BLOCK_LEN..];
552 }
553
554 self.fill_buf(&mut input);
555 debug_assert!(input.is_empty());
556 debug_assert!(self.len() <= CHUNK_LEN);
557 self
558 }
559
560 fn output(&self) -> Output {
561 let block_flags = self.flags | self.start_flag() | CHUNK_END;
562 Output {
563 input_chaining_value: self.cv,
564 block: self.buf,
565 block_len: self.buf_len,
566 counter: self.chunk_counter,
567 flags: block_flags,
568 platform: self.platform,
569 }
570 }
571}
572
573// Don't derive(Debug), because the state may be secret.
574impl fmt::Debug for ChunkState {
575 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
576 f.debug_struct("ChunkState")
577 .field("len", &self.len())
578 .field("chunk_counter", &self.chunk_counter)
579 .field("flags", &self.flags)
580 .field("platform", &self.platform)
581 .finish()
582 }
583}
584
585#[cfg(feature = "zeroize")]
586impl Zeroize for ChunkState {
587 fn zeroize(&mut self) {
588 // Destructuring to trigger compile error as a reminder to update this impl.
589 let Self {
590 cv,
591 chunk_counter,
592 buf,
593 buf_len,
594 blocks_compressed,
595 flags,
596 platform: _,
597 } = self;
598
599 cv.zeroize();
600 chunk_counter.zeroize();
601 buf.zeroize();
602 buf_len.zeroize();
603 blocks_compressed.zeroize();
604 flags.zeroize();
605 }
606}
607
608// IMPLEMENTATION NOTE
609// ===================
610// The recursive function compress_subtree_wide(), implemented below, is the
611// basis of high-performance BLAKE3. We use it both for all-at-once hashing,
612// and for the incremental input with Hasher (though we have to be careful with
613// subtree boundaries in the incremental case). compress_subtree_wide() applies
614// several optimizations at the same time:
615// - Multithreading with Rayon.
616// - Parallel chunk hashing with SIMD.
617// - Parallel parent hashing with SIMD. Note that while SIMD chunk hashing
618// maxes out at MAX_SIMD_DEGREE*CHUNK_LEN, parallel parent hashing continues
619// to benefit from larger inputs, because more levels of the tree benefit can
620// use full-width SIMD vectors for parent hashing. Without parallel parent
621// hashing, we lose about 10% of overall throughput on AVX2 and AVX-512.
622
623/// Undocumented and unstable, for benchmarks only.
624#[doc(hidden)]
625#[derive(Clone, Copy)]
626pub enum IncrementCounter {
627 Yes,
628 No,
629}
630
631impl IncrementCounter {
632 #[inline]
633 fn yes(&self) -> bool {
634 match self {
635 IncrementCounter::Yes => true,
636 IncrementCounter::No => false,
637 }
638 }
639}
640
641// The largest power of two less than or equal to `n`, used for left_len()
642// immediately below, and also directly in Hasher::update().
643fn largest_power_of_two_leq(n: usize) -> usize {
644 ((n / 2) + 1).next_power_of_two()
645}
646
647// Given some input larger than one chunk, return the number of bytes that
648// should go in the left subtree. This is the largest power-of-2 number of
649// chunks that leaves at least 1 byte for the right subtree.
650fn left_len(content_len: usize) -> usize {
651 debug_assert!(content_len > CHUNK_LEN);
652 // Subtract 1 to reserve at least one byte for the right side.
653 let full_chunks = (content_len - 1) / CHUNK_LEN;
654 largest_power_of_two_leq(full_chunks) * CHUNK_LEN
655}
656
657// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
658// on a single thread. Write out the chunk chaining values and return the
659// number of chunks hashed. These chunks are never the root and never empty;
660// those cases use a different codepath.
661fn compress_chunks_parallel(
662 input: &[u8],
663 key: &CVWords,
664 chunk_counter: u64,
665 flags: u8,
666 platform: Platform,
667 out: &mut [u8],
668) -> usize {
669 debug_assert!(!input.is_empty(), "empty chunks below the root");
670 debug_assert!(input.len() <= MAX_SIMD_DEGREE * CHUNK_LEN);
671
672 let mut chunks_exact = input.chunks_exact(CHUNK_LEN);
673 let mut chunks_array = ArrayVec::<&[u8; CHUNK_LEN], MAX_SIMD_DEGREE>::new();
674 for chunk in &mut chunks_exact {
675 chunks_array.push(array_ref!(chunk, 0, CHUNK_LEN));
676 }
677 platform.hash_many(
678 &chunks_array,
679 key,
680 chunk_counter,
681 IncrementCounter::Yes,
682 flags,
683 CHUNK_START,
684 CHUNK_END,
685 out,
686 );
687
688 // Hash the remaining partial chunk, if there is one. Note that the empty
689 // chunk (meaning the empty message) is a different codepath.
690 let chunks_so_far = chunks_array.len();
691 if !chunks_exact.remainder().is_empty() {
692 let counter = chunk_counter + chunks_so_far as u64;
693 let mut chunk_state = ChunkState::new(key, counter, flags, platform);
694 chunk_state.update(chunks_exact.remainder());
695 *array_mut_ref!(out, chunks_so_far * OUT_LEN, OUT_LEN) =
696 chunk_state.output().chaining_value();
697 chunks_so_far + 1
698 } else {
699 chunks_so_far
700 }
701}
702
703// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
704// on a single thread. Write out the parent chaining values and return the
705// number of parents hashed. (If there's an odd input chaining value left over,
706// return it as an additional output.) These parents are never the root and
707// never empty; those cases use a different codepath.
708fn compress_parents_parallel(
709 child_chaining_values: &[u8],
710 key: &CVWords,
711 flags: u8,
712 platform: Platform,
713 out: &mut [u8],
714) -> usize {
715 debug_assert_eq!(child_chaining_values.len() % OUT_LEN, 0, "wacky hash bytes");
716 let num_children = child_chaining_values.len() / OUT_LEN;
717 debug_assert!(num_children >= 2, "not enough children");
718 debug_assert!(num_children <= 2 * MAX_SIMD_DEGREE_OR_2, "too many");
719
720 let mut parents_exact = child_chaining_values.chunks_exact(BLOCK_LEN);
721 // Use MAX_SIMD_DEGREE_OR_2 rather than MAX_SIMD_DEGREE here, because of
722 // the requirements of compress_subtree_wide().
723 let mut parents_array = ArrayVec::<&[u8; BLOCK_LEN], MAX_SIMD_DEGREE_OR_2>::new();
724 for parent in &mut parents_exact {
725 parents_array.push(array_ref!(parent, 0, BLOCK_LEN));
726 }
727 platform.hash_many(
728 &parents_array,
729 key,
730 0, // Parents always use counter 0.
731 IncrementCounter::No,
732 flags | PARENT,
733 0, // Parents have no start flags.
734 0, // Parents have no end flags.
735 out,
736 );
737
738 // If there's an odd child left over, it becomes an output.
739 let parents_so_far = parents_array.len();
740 if !parents_exact.remainder().is_empty() {
741 out[parents_so_far * OUT_LEN..][..OUT_LEN].copy_from_slice(parents_exact.remainder());
742 parents_so_far + 1
743 } else {
744 parents_so_far
745 }
746}
747
748// The wide helper function returns (writes out) an array of chaining values
749// and returns the length of that array. The number of chaining values returned
750// is the dynamically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
751// if the input is shorter than that many chunks. The reason for maintaining a
752// wide array of chaining values going back up the tree, is to allow the
753// implementation to hash as many parents in parallel as possible.
754//
755// As a special case when the SIMD degree is 1, this function will still return
756// at least 2 outputs. This guarantees that this function doesn't perform the
757// root compression. (If it did, it would use the wrong flags, and also we
758// wouldn't be able to implement extendable output.) Note that this function is
759// not used when the whole input is only 1 chunk long; that's a different
760// codepath.
761//
762// Why not just have the caller split the input on the first update(), instead
763// of implementing this special rule? Because we don't want to limit SIMD or
764// multithreading parallelism for that update().
765fn compress_subtree_wide<J: join::Join>(
766 input: &[u8],
767 key: &CVWords,
768 chunk_counter: u64,
769 flags: u8,
770 platform: Platform,
771 out: &mut [u8],
772) -> usize {
773 // Note that the single chunk case does *not* bump the SIMD degree up to 2
774 // when it is 1. This allows Rayon the option of multithreading even the
775 // 2-chunk case, which can help performance on smaller platforms.
776 if input.len() <= platform.simd_degree() * CHUNK_LEN {
777 return compress_chunks_parallel(input, key, chunk_counter, flags, platform, out);
778 }
779
780 // With more than simd_degree chunks, we need to recurse. Start by dividing
781 // the input into left and right subtrees. (Note that this is only optimal
782 // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
783 // of 3 or something, we'll need a more complicated strategy.)
784 debug_assert_eq!(platform.simd_degree().count_ones(), 1, "power of 2");
785 let (left, right) = input.split_at(left_len(input.len()));
786 let right_chunk_counter = chunk_counter + (left.len() / CHUNK_LEN) as u64;
787
788 // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
789 // account for the special case of returning 2 outputs when the SIMD degree
790 // is 1.
791 let mut cv_array = [0; 2 * MAX_SIMD_DEGREE_OR_2 * OUT_LEN];
792 let degree = if left.len() == CHUNK_LEN {
793 // The "simd_degree=1 and we're at the leaf nodes" case.
794 debug_assert_eq!(platform.simd_degree(), 1);
795 1
796 } else {
797 cmp::max(platform.simd_degree(), 2)
798 };
799 let (left_out, right_out) = cv_array.split_at_mut(degree * OUT_LEN);
800
801 // Recurse! For update_rayon(), this is where we take advantage of RayonJoin and use multiple
802 // threads.
803 let (left_n, right_n) = J::join(
804 || compress_subtree_wide::<J>(left, key, chunk_counter, flags, platform, left_out),
805 || compress_subtree_wide::<J>(right, key, right_chunk_counter, flags, platform, right_out),
806 );
807
808 // The special case again. If simd_degree=1, then we'll have left_n=1 and
809 // right_n=1. Rather than compressing them into a single output, return
810 // them directly, to make sure we always have at least two outputs.
811 debug_assert_eq!(left_n, degree);
812 debug_assert!(right_n >= 1 && right_n <= left_n);
813 if left_n == 1 {
814 out[..2 * OUT_LEN].copy_from_slice(&cv_array[..2 * OUT_LEN]);
815 return 2;
816 }
817
818 // Otherwise, do one layer of parent node compression.
819 let num_children = left_n + right_n;
820 compress_parents_parallel(
821 &cv_array[..num_children * OUT_LEN],
822 key,
823 flags,
824 platform,
825 out,
826 )
827}
828
829// Hash a subtree with compress_subtree_wide(), and then condense the resulting
830// list of chaining values down to a single parent node. Don't compress that
831// last parent node, however. Instead, return its message bytes (the
832// concatenated chaining values of its children). This is necessary when the
833// first call to update() supplies a complete subtree, because the topmost
834// parent node of that subtree could end up being the root. It's also necessary
835// for extended output in the general case.
836//
837// As with compress_subtree_wide(), this function is not used on inputs of 1
838// chunk or less. That's a different codepath.
839fn compress_subtree_to_parent_node<J: join::Join>(
840 input: &[u8],
841 key: &CVWords,
842 chunk_counter: u64,
843 flags: u8,
844 platform: Platform,
845) -> [u8; BLOCK_LEN] {
846 debug_assert!(input.len() > CHUNK_LEN);
847 let mut cv_array = [0; MAX_SIMD_DEGREE_OR_2 * OUT_LEN];
848 let mut num_cvs =
849 compress_subtree_wide::<J>(input, &key, chunk_counter, flags, platform, &mut cv_array);
850 debug_assert!(num_cvs >= 2);
851
852 // If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
853 // compress_subtree_wide() returns more than 2 chaining values. Condense
854 // them into 2 by forming parent nodes repeatedly.
855 let mut out_array = [0; MAX_SIMD_DEGREE_OR_2 * OUT_LEN / 2];
856 while num_cvs > 2 {
857 let cv_slice = &cv_array[..num_cvs * OUT_LEN];
858 num_cvs = compress_parents_parallel(cv_slice, key, flags, platform, &mut out_array);
859 cv_array[..num_cvs * OUT_LEN].copy_from_slice(&out_array[..num_cvs * OUT_LEN]);
860 }
861 *array_ref!(cv_array, 0, 2 * OUT_LEN)
862}
863
864// Hash a complete input all at once. Unlike compress_subtree_wide() and
865// compress_subtree_to_parent_node(), this function handles the 1 chunk case.
866fn hash_all_at_once<J: join::Join>(input: &[u8], key: &CVWords, flags: u8) -> Output {
867 let platform = Platform::detect();
868
869 // If the whole subtree is one chunk, hash it directly with a ChunkState.
870 if input.len() <= CHUNK_LEN {
871 return ChunkState::new(key, 0, flags, platform)
872 .update(input)
873 .output();
874 }
875
876 // Otherwise construct an Output object from the parent node returned by
877 // compress_subtree_to_parent_node().
878 Output {
879 input_chaining_value: *key,
880 block: compress_subtree_to_parent_node::<J>(input, key, 0, flags, platform),
881 block_len: BLOCK_LEN as u8,
882 counter: 0,
883 flags: flags | PARENT,
884 platform,
885 }
886}
887
888/// The default hash function.
889///
890/// For an incremental version that accepts multiple writes, see [`Hasher::new`],
891/// [`Hasher::update`], and [`Hasher::finalize`]. These two lines are equivalent:
892///
893/// ```
894/// let hash = blake3::hash(b"foo");
895/// # let hash1 = hash;
896///
897/// let hash = blake3::Hasher::new().update(b"foo").finalize();
898/// # let hash2 = hash;
899/// # assert_eq!(hash1, hash2);
900/// ```
901///
902/// For output sizes other than 32 bytes, see [`Hasher::finalize_xof`] and
903/// [`OutputReader`].
904///
905/// This function is always single-threaded. For multithreading support, see
906/// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon).
907pub fn hash(input: &[u8]) -> Hash {
908 hash_all_at_once::<join::SerialJoin>(input, IV, 0).root_hash()
909}
910
911/// The keyed hash function.
912///
913/// This is suitable for use as a message authentication code, for example to
914/// replace an HMAC instance. In that use case, the constant-time equality
915/// checking provided by [`Hash`](struct.Hash.html) is almost always a security
916/// requirement, and callers need to be careful not to compare MACs as raw
917/// bytes.
918///
919/// For an incremental version that accepts multiple writes, see [`Hasher::new_keyed`],
920/// [`Hasher::update`], and [`Hasher::finalize`]. These two lines are equivalent:
921///
922/// ```
923/// # const KEY: &[u8; 32] = &[0; 32];
924/// let mac = blake3::keyed_hash(KEY, b"foo");
925/// # let mac1 = mac;
926///
927/// let mac = blake3::Hasher::new_keyed(KEY).update(b"foo").finalize();
928/// # let mac2 = mac;
929/// # assert_eq!(mac1, mac2);
930/// ```
931///
932/// For output sizes other than 32 bytes, see [`Hasher::finalize_xof`], and [`OutputReader`].
933///
934/// This function is always single-threaded. For multithreading support, see
935/// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon).
936pub fn keyed_hash(key: &[u8; KEY_LEN], input: &[u8]) -> Hash {
937 let key_words = platform::words_from_le_bytes_32(key);
938 hash_all_at_once::<join::SerialJoin>(input, &key_words, KEYED_HASH).root_hash()
939}
940
941/// The key derivation function.
942///
943/// Given cryptographic key material of any length and a context string of any
944/// length, this function outputs a 32-byte derived subkey. **The context string
945/// should be hardcoded, globally unique, and application-specific.** A good
946/// default format for such strings is `"[application] [commit timestamp]
947/// [purpose]"`, e.g., `"example.com 2019-12-25 16:18:03 session tokens v1"`.
948///
949/// Key derivation is important when you want to use the same key in multiple
950/// algorithms or use cases. Using the same key with different cryptographic
951/// algorithms is generally forbidden, and deriving a separate subkey for each
952/// use case protects you from bad interactions. Derived keys also mitigate the
953/// damage from one part of your application accidentally leaking its key.
954///
955/// As a rare exception to that general rule, however, it is possible to use
956/// `derive_key` itself with key material that you are already using with
957/// another algorithm. You might need to do this if you're adding features to
958/// an existing application, which does not yet use key derivation internally.
959/// However, you still must not share key material with algorithms that forbid
960/// key reuse entirely, like a one-time pad. For more on this, see sections 6.2
961/// and 7.8 of the [BLAKE3 paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf).
962///
963/// Note that BLAKE3 is not a password hash, and **`derive_key` should never be
964/// used with passwords.** Instead, use a dedicated password hash like
965/// [Argon2]. Password hashes are entirely different from generic hash
966/// functions, with opposite design requirements.
967///
968/// For an incremental version that accepts multiple writes, see [`Hasher::new_derive_key`],
969/// [`Hasher::update`], and [`Hasher::finalize`]. These two statements are equivalent:
970///
971/// ```
972/// # const CONTEXT: &str = "example.com 2019-12-25 16:18:03 session tokens v1";
973/// let key = blake3::derive_key(CONTEXT, b"key material, not a password");
974/// # let key1 = key;
975///
976/// let key: [u8; 32] = blake3::Hasher::new_derive_key(CONTEXT)
977/// .update(b"key material, not a password")
978/// .finalize()
979/// .into();
980/// # let key2 = key;
981/// # assert_eq!(key1, key2);
982/// ```
983///
984/// For output sizes other than 32 bytes, see [`Hasher::finalize_xof`], and [`OutputReader`].
985///
986/// This function is always single-threaded. For multithreading support, see
987/// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon).
988///
989/// [Argon2]: https://en.wikipedia.org/wiki/Argon2
990pub fn derive_key(context: &str, key_material: &[u8]) -> [u8; OUT_LEN] {
991 let context_key =
992 hash_all_at_once::<join::SerialJoin>(context.as_bytes(), IV, DERIVE_KEY_CONTEXT)
993 .root_hash();
994 let context_key_words = platform::words_from_le_bytes_32(context_key.as_bytes());
995 hash_all_at_once::<join::SerialJoin>(key_material, &context_key_words, DERIVE_KEY_MATERIAL)
996 .root_hash()
997 .0
998}
999
1000fn parent_node_output(
1001 left_child: &CVBytes,
1002 right_child: &CVBytes,
1003 key: &CVWords,
1004 flags: u8,
1005 platform: Platform,
1006) -> Output {
1007 let mut block = [0; BLOCK_LEN];
1008 block[..32].copy_from_slice(left_child);
1009 block[32..].copy_from_slice(right_child);
1010 Output {
1011 input_chaining_value: *key,
1012 block,
1013 block_len: BLOCK_LEN as u8,
1014 counter: 0,
1015 flags: flags | PARENT,
1016 platform,
1017 }
1018}
1019
1020/// An incremental hash state that can accept any number of writes.
1021///
1022/// The `rayon` and `mmap` Cargo features enable additional methods on this
1023/// type related to multithreading and memory-mapped IO.
1024///
1025/// When the `traits-preview` Cargo feature is enabled, this type implements
1026/// several commonly used traits from the
1027/// [`digest`](https://crates.io/crates/digest) crate. However, those
1028/// traits aren't stable, and they're expected to change in incompatible ways
1029/// before that crate reaches 1.0. For that reason, this crate makes no SemVer
1030/// guarantees for this feature, and callers who use it should expect breaking
1031/// changes between patch versions.
1032///
1033/// # Examples
1034///
1035/// ```
1036/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1037/// // Hash an input incrementally.
1038/// let mut hasher = blake3::Hasher::new();
1039/// hasher.update(b"foo");
1040/// hasher.update(b"bar");
1041/// hasher.update(b"baz");
1042/// assert_eq!(hasher.finalize(), blake3::hash(b"foobarbaz"));
1043///
1044/// // Extended output. OutputReader also implements Read and Seek.
1045/// # #[cfg(feature = "std")] {
1046/// let mut output = [0; 1000];
1047/// let mut output_reader = hasher.finalize_xof();
1048/// output_reader.fill(&mut output);
1049/// assert_eq!(&output[..32], blake3::hash(b"foobarbaz").as_bytes());
1050/// # }
1051/// # Ok(())
1052/// # }
1053/// ```
1054#[derive(Clone)]
1055pub struct Hasher {
1056 key: CVWords,
1057 chunk_state: ChunkState,
1058 // The stack size is MAX_DEPTH + 1 because we do lazy merging. For example,
1059 // with 7 chunks, we have 3 entries in the stack. Adding an 8th chunk
1060 // requires a 4th entry, rather than merging everything down to 1, because
1061 // we don't know whether more input is coming. This is different from how
1062 // the reference implementation does things.
1063 cv_stack: ArrayVec<CVBytes, { MAX_DEPTH + 1 }>,
1064}
1065
1066impl Hasher {
1067 fn new_internal(key: &CVWords, flags: u8) -> Self {
1068 Self {
1069 key: *key,
1070 chunk_state: ChunkState::new(key, 0, flags, Platform::detect()),
1071 cv_stack: ArrayVec::new(),
1072 }
1073 }
1074
1075 /// Construct a new `Hasher` for the regular hash function.
1076 pub fn new() -> Self {
1077 Self::new_internal(IV, 0)
1078 }
1079
1080 /// Construct a new `Hasher` for the keyed hash function. See
1081 /// [`keyed_hash`].
1082 ///
1083 /// [`keyed_hash`]: fn.keyed_hash.html
1084 pub fn new_keyed(key: &[u8; KEY_LEN]) -> Self {
1085 let key_words = platform::words_from_le_bytes_32(key);
1086 Self::new_internal(&key_words, KEYED_HASH)
1087 }
1088
1089 /// Construct a new `Hasher` for the key derivation function. See
1090 /// [`derive_key`]. The context string should be hardcoded, globally
1091 /// unique, and application-specific.
1092 ///
1093 /// [`derive_key`]: fn.derive_key.html
1094 pub fn new_derive_key(context: &str) -> Self {
1095 let context_key =
1096 hash_all_at_once::<join::SerialJoin>(context.as_bytes(), IV, DERIVE_KEY_CONTEXT)
1097 .root_hash();
1098 let context_key_words = platform::words_from_le_bytes_32(context_key.as_bytes());
1099 Self::new_internal(&context_key_words, DERIVE_KEY_MATERIAL)
1100 }
1101
1102 /// Reset the `Hasher` to its initial state.
1103 ///
1104 /// This is functionally the same as overwriting the `Hasher` with a new
1105 /// one, using the same key or context string if any.
1106 pub fn reset(&mut self) -> &mut Self {
1107 self.chunk_state = ChunkState::new(
1108 &self.key,
1109 0,
1110 self.chunk_state.flags,
1111 self.chunk_state.platform,
1112 );
1113 self.cv_stack.clear();
1114 self
1115 }
1116
1117 // As described in push_cv() below, we do "lazy merging", delaying merges
1118 // until right before the next CV is about to be added. This is different
1119 // from the reference implementation. Another difference is that we aren't
1120 // always merging 1 chunk at a time. Instead, each CV might represent any
1121 // power-of-two number of chunks, as long as the smaller-above-larger stack
1122 // order is maintained. Instead of the "count the trailing 0-bits"
1123 // algorithm described in the spec, we use a "count the total number of
1124 // 1-bits" variant that doesn't require us to retain the subtree size of
1125 // the CV on top of the stack. The principle is the same: each CV that
1126 // should remain in the stack is represented by a 1-bit in the total number
1127 // of chunks (or bytes) so far.
1128 fn merge_cv_stack(&mut self, total_len: u64) {
1129 let post_merge_stack_len = total_len.count_ones() as usize;
1130 while self.cv_stack.len() > post_merge_stack_len {
1131 let right_child = self.cv_stack.pop().unwrap();
1132 let left_child = self.cv_stack.pop().unwrap();
1133 let parent_output = parent_node_output(
1134 &left_child,
1135 &right_child,
1136 &self.key,
1137 self.chunk_state.flags,
1138 self.chunk_state.platform,
1139 );
1140 self.cv_stack.push(parent_output.chaining_value());
1141 }
1142 }
1143
1144 // In reference_impl.rs, we merge the new CV with existing CVs from the
1145 // stack before pushing it. We can do that because we know more input is
1146 // coming, so we know none of the merges are root.
1147 //
1148 // This setting is different. We want to feed as much input as possible to
1149 // compress_subtree_wide(), without setting aside anything for the
1150 // chunk_state. If the user gives us 64 KiB, we want to parallelize over
1151 // all 64 KiB at once as a single subtree, if at all possible.
1152 //
1153 // This leads to two problems:
1154 // 1) This 64 KiB input might be the only call that ever gets made to
1155 // update. In this case, the root node of the 64 KiB subtree would be
1156 // the root node of the whole tree, and it would need to be ROOT
1157 // finalized. We can't compress it until we know.
1158 // 2) This 64 KiB input might complete a larger tree, whose root node is
1159 // similarly going to be the root of the whole tree. For example,
1160 // maybe we have 196 KiB (that is, 128 + 64) hashed so far. We can't
1161 // compress the node at the root of the 256 KiB subtree until we know
1162 // how to finalize it.
1163 //
1164 // The second problem is solved with "lazy merging". That is, when we're
1165 // about to add a CV to the stack, we don't merge it with anything first,
1166 // as the reference impl does. Instead we do merges using the *previous* CV
1167 // that was added, which is sitting on top of the stack, and we put the new
1168 // CV (unmerged) on top of the stack afterwards. This guarantees that we
1169 // never merge the root node until finalize().
1170 //
1171 // Solving the first problem requires an additional tool,
1172 // compress_subtree_to_parent_node(). That function always returns the top
1173 // *two* chaining values of the subtree it's compressing. We then do lazy
1174 // merging with each of them separately, so that the second CV will always
1175 // remain unmerged. (That also helps us support extendable output when
1176 // we're hashing an input all-at-once.)
1177 fn push_cv(&mut self, new_cv: &CVBytes, chunk_counter: u64) {
1178 self.merge_cv_stack(chunk_counter);
1179 self.cv_stack.push(*new_cv);
1180 }
1181
1182 /// Add input bytes to the hash state. You can call this any number of times.
1183 ///
1184 /// This method is always single-threaded. For multithreading support, see
1185 /// [`update_rayon`](#method.update_rayon) (enabled with the `rayon` Cargo feature).
1186 ///
1187 /// Note that the degree of SIMD parallelism that `update` can use is limited by the size of
1188 /// this input buffer. See [`update_reader`](#method.update_reader).
1189 pub fn update(&mut self, input: &[u8]) -> &mut Self {
1190 self.update_with_join::<join::SerialJoin>(input)
1191 }
1192
1193 fn update_with_join<J: join::Join>(&mut self, mut input: &[u8]) -> &mut Self {
1194 // If we have some partial chunk bytes in the internal chunk_state, we
1195 // need to finish that chunk first.
1196 if self.chunk_state.len() > 0 {
1197 let want = CHUNK_LEN - self.chunk_state.len();
1198 let take = cmp::min(want, input.len());
1199 self.chunk_state.update(&input[..take]);
1200 input = &input[take..];
1201 if !input.is_empty() {
1202 // We've filled the current chunk, and there's more input
1203 // coming, so we know it's not the root and we can finalize it.
1204 // Then we'll proceed to hashing whole chunks below.
1205 debug_assert_eq!(self.chunk_state.len(), CHUNK_LEN);
1206 let chunk_cv = self.chunk_state.output().chaining_value();
1207 self.push_cv(&chunk_cv, self.chunk_state.chunk_counter);
1208 self.chunk_state = ChunkState::new(
1209 &self.key,
1210 self.chunk_state.chunk_counter + 1,
1211 self.chunk_state.flags,
1212 self.chunk_state.platform,
1213 );
1214 } else {
1215 return self;
1216 }
1217 }
1218
1219 // Now the chunk_state is clear, and we have more input. If there's
1220 // more than a single chunk (so, definitely not the root chunk), hash
1221 // the largest whole subtree we can, with the full benefits of SIMD and
1222 // multithreading parallelism. Two restrictions:
1223 // - The subtree has to be a power-of-2 number of chunks. Only subtrees
1224 // along the right edge can be incomplete, and we don't know where
1225 // the right edge is going to be until we get to finalize().
1226 // - The subtree must evenly divide the total number of chunks up until
1227 // this point (if total is not 0). If the current incomplete subtree
1228 // is only waiting for 1 more chunk, we can't hash a subtree of 4
1229 // chunks. We have to complete the current subtree first.
1230 // Because we might need to break up the input to form powers of 2, or
1231 // to evenly divide what we already have, this part runs in a loop.
1232 while input.len() > CHUNK_LEN {
1233 debug_assert_eq!(self.chunk_state.len(), 0, "no partial chunk data");
1234 debug_assert_eq!(CHUNK_LEN.count_ones(), 1, "power of 2 chunk len");
1235 let mut subtree_len = largest_power_of_two_leq(input.len());
1236 let count_so_far = self.chunk_state.chunk_counter * CHUNK_LEN as u64;
1237 // Shrink the subtree_len until it evenly divides the count so far.
1238 // We know that subtree_len itself is a power of 2, so we can use a
1239 // bitmasking trick instead of an actual remainder operation. (Note
1240 // that if the caller consistently passes power-of-2 inputs of the
1241 // same size, as is hopefully typical, this loop condition will
1242 // always fail, and subtree_len will always be the full length of
1243 // the input.)
1244 //
1245 // An aside: We don't have to shrink subtree_len quite this much.
1246 // For example, if count_so_far is 1, we could pass 2 chunks to
1247 // compress_subtree_to_parent_node. Since we'll get 2 CVs back,
1248 // we'll still get the right answer in the end, and we might get to
1249 // use 2-way SIMD parallelism. The problem with this optimization,
1250 // is that it gets us stuck always hashing 2 chunks. The total
1251 // number of chunks will remain odd, and we'll never graduate to
1252 // higher degrees of parallelism. See
1253 // https://github.com/BLAKE3-team/BLAKE3/issues/69.
1254 while (subtree_len - 1) as u64 & count_so_far != 0 {
1255 subtree_len /= 2;
1256 }
1257 // The shrunken subtree_len might now be 1 chunk long. If so, hash
1258 // that one chunk by itself. Otherwise, compress the subtree into a
1259 // pair of CVs.
1260 let subtree_chunks = (subtree_len / CHUNK_LEN) as u64;
1261 if subtree_len <= CHUNK_LEN {
1262 debug_assert_eq!(subtree_len, CHUNK_LEN);
1263 self.push_cv(
1264 &ChunkState::new(
1265 &self.key,
1266 self.chunk_state.chunk_counter,
1267 self.chunk_state.flags,
1268 self.chunk_state.platform,
1269 )
1270 .update(&input[..subtree_len])
1271 .output()
1272 .chaining_value(),
1273 self.chunk_state.chunk_counter,
1274 );
1275 } else {
1276 // This is the high-performance happy path, though getting here
1277 // depends on the caller giving us a long enough input.
1278 let cv_pair = compress_subtree_to_parent_node::<J>(
1279 &input[..subtree_len],
1280 &self.key,
1281 self.chunk_state.chunk_counter,
1282 self.chunk_state.flags,
1283 self.chunk_state.platform,
1284 );
1285 let left_cv = array_ref!(cv_pair, 0, 32);
1286 let right_cv = array_ref!(cv_pair, 32, 32);
1287 // Push the two CVs we received into the CV stack in order. Because
1288 // the stack merges lazily, this guarantees we aren't merging the
1289 // root.
1290 self.push_cv(left_cv, self.chunk_state.chunk_counter);
1291 self.push_cv(
1292 right_cv,
1293 self.chunk_state.chunk_counter + (subtree_chunks / 2),
1294 );
1295 }
1296 self.chunk_state.chunk_counter += subtree_chunks;
1297 input = &input[subtree_len..];
1298 }
1299
1300 // What remains is 1 chunk or less. Add it to the chunk state.
1301 debug_assert!(input.len() <= CHUNK_LEN);
1302 if !input.is_empty() {
1303 self.chunk_state.update(input);
1304 // Having added some input to the chunk_state, we know what's in
1305 // the CV stack won't become the root node, and we can do an extra
1306 // merge. This simplifies finalize().
1307 self.merge_cv_stack(self.chunk_state.chunk_counter);
1308 }
1309
1310 self
1311 }
1312
1313 fn final_output(&self) -> Output {
1314 // If the current chunk is the only chunk, that makes it the root node
1315 // also. Convert it directly into an Output. Otherwise, we need to
1316 // merge subtrees below.
1317 if self.cv_stack.is_empty() {
1318 debug_assert_eq!(self.chunk_state.chunk_counter, 0);
1319 return self.chunk_state.output();
1320 }
1321
1322 // If there are any bytes in the ChunkState, finalize that chunk and
1323 // merge its CV with everything in the CV stack. In that case, the work
1324 // we did at the end of update() above guarantees that the stack
1325 // doesn't contain any unmerged subtrees that need to be merged first.
1326 // (This is important, because if there were two chunk hashes sitting
1327 // on top of the stack, they would need to merge with each other, and
1328 // merging a new chunk hash into them would be incorrect.)
1329 //
1330 // If there are no bytes in the ChunkState, we'll merge what's already
1331 // in the stack. In this case it's fine if there are unmerged chunks on
1332 // top, because we'll merge them with each other. Note that the case of
1333 // the empty chunk is taken care of above.
1334 let mut output: Output;
1335 let mut num_cvs_remaining = self.cv_stack.len();
1336 if self.chunk_state.len() > 0 {
1337 debug_assert_eq!(
1338 self.cv_stack.len(),
1339 self.chunk_state.chunk_counter.count_ones() as usize,
1340 "cv stack does not need a merge"
1341 );
1342 output = self.chunk_state.output();
1343 } else {
1344 debug_assert!(self.cv_stack.len() >= 2);
1345 output = parent_node_output(
1346 &self.cv_stack[num_cvs_remaining - 2],
1347 &self.cv_stack[num_cvs_remaining - 1],
1348 &self.key,
1349 self.chunk_state.flags,
1350 self.chunk_state.platform,
1351 );
1352 num_cvs_remaining -= 2;
1353 }
1354 while num_cvs_remaining > 0 {
1355 output = parent_node_output(
1356 &self.cv_stack[num_cvs_remaining - 1],
1357 &output.chaining_value(),
1358 &self.key,
1359 self.chunk_state.flags,
1360 self.chunk_state.platform,
1361 );
1362 num_cvs_remaining -= 1;
1363 }
1364 output
1365 }
1366
1367 /// Finalize the hash state and return the [`Hash`](struct.Hash.html) of
1368 /// the input.
1369 ///
1370 /// This method is idempotent. Calling it twice will give the same result.
1371 /// You can also add more input and finalize again.
1372 pub fn finalize(&self) -> Hash {
1373 self.final_output().root_hash()
1374 }
1375
1376 /// Finalize the hash state and return an [`OutputReader`], which can
1377 /// supply any number of output bytes.
1378 ///
1379 /// This method is idempotent. Calling it twice will give the same result.
1380 /// You can also add more input and finalize again.
1381 ///
1382 /// [`OutputReader`]: struct.OutputReader.html
1383 pub fn finalize_xof(&self) -> OutputReader {
1384 OutputReader::new(self.final_output())
1385 }
1386
1387 /// Return the total number of bytes hashed so far.
1388 pub fn count(&self) -> u64 {
1389 self.chunk_state.chunk_counter * CHUNK_LEN as u64 + self.chunk_state.len() as u64
1390 }
1391
1392 /// As [`update`](Hasher::update), but reading from a
1393 /// [`std::io::Read`](https://doc.rust-lang.org/std/io/trait.Read.html) implementation.
1394 ///
1395 /// [`Hasher`] implements
1396 /// [`std::io::Write`](https://doc.rust-lang.org/std/io/trait.Write.html), so it's possible to
1397 /// use [`std::io::copy`](https://doc.rust-lang.org/std/io/fn.copy.html) to update a [`Hasher`]
1398 /// from any reader. Unfortunately, this standard approach can limit performance, because
1399 /// `copy` currently uses an internal 8 KiB buffer that isn't big enough to take advantage of
1400 /// all SIMD instruction sets. (In particular, [AVX-512](https://en.wikipedia.org/wiki/AVX-512)
1401 /// needs a 16 KiB buffer.) `update_reader` avoids this performance problem and is slightly
1402 /// more convenient.
1403 ///
1404 /// The internal buffer size this method uses may change at any time, and it may be different
1405 /// for different targets. The only guarantee is that it will be large enough for all of this
1406 /// crate's SIMD implementations on the current platform.
1407 ///
1408 /// The most common implementer of
1409 /// [`std::io::Read`](https://doc.rust-lang.org/std/io/trait.Read.html) might be
1410 /// [`std::fs::File`](https://doc.rust-lang.org/std/fs/struct.File.html), but note that memory
1411 /// mapping can be faster than this method for hashing large files. See
1412 /// [`update_mmap`](Hasher::update_mmap) and [`update_mmap_rayon`](Hasher::update_mmap_rayon),
1413 /// which require the `mmap` and (for the latter) `rayon` Cargo features.
1414 ///
1415 /// This method requires the `std` Cargo feature, which is enabled by default.
1416 ///
1417 /// # Example
1418 ///
1419 /// ```no_run
1420 /// # use std::fs::File;
1421 /// # use std::io;
1422 /// # fn main() -> io::Result<()> {
1423 /// // Hash standard input.
1424 /// let mut hasher = blake3::Hasher::new();
1425 /// hasher.update_reader(std::io::stdin().lock())?;
1426 /// println!("{}", hasher.finalize());
1427 /// # Ok(())
1428 /// # }
1429 /// ```
1430 #[cfg(feature = "std")]
1431 pub fn update_reader(&mut self, reader: impl std::io::Read) -> std::io::Result<&mut Self> {
1432 io::copy_wide(reader, self)?;
1433 Ok(self)
1434 }
1435
1436 /// As [`update`](Hasher::update), but using Rayon-based multithreading
1437 /// internally.
1438 ///
1439 /// This method is gated by the `rayon` Cargo feature, which is disabled by
1440 /// default but enabled on [docs.rs](https://docs.rs).
1441 ///
1442 /// To get any performance benefit from multithreading, the input buffer
1443 /// needs to be large. As a rule of thumb on x86_64, `update_rayon` is
1444 /// _slower_ than `update` for inputs under 128 KiB. That threshold varies
1445 /// quite a lot across different processors, and it's important to benchmark
1446 /// your specific use case. See also the performance warning associated with
1447 /// [`update_mmap_rayon`](Hasher::update_mmap_rayon).
1448 ///
1449 /// If you already have a large buffer in memory, and you want to hash it
1450 /// with multiple threads, this method is a good option. However, reading a
1451 /// file into memory just to call this method can be a performance mistake,
1452 /// both because it requires lots of memory and because single-threaded
1453 /// reads can be slow. For hashing whole files, see
1454 /// [`update_mmap_rayon`](Hasher::update_mmap_rayon), which is gated by both
1455 /// the `rayon` and `mmap` Cargo features.
1456 #[cfg(feature = "rayon")]
1457 pub fn update_rayon(&mut self, input: &[u8]) -> &mut Self {
1458 self.update_with_join::<join::RayonJoin>(input)
1459 }
1460
1461 /// As [`update`](Hasher::update), but reading the contents of a file using memory mapping.
1462 ///
1463 /// Not all files can be memory mapped, and memory mapping small files can be slower than
1464 /// reading them the usual way. In those cases, this method will fall back to standard file IO.
1465 /// The heuristic for whether to use memory mapping is currently very simple (file size >=
1466 /// 16 KiB), and it might change at any time.
1467 ///
1468 /// Like [`update`](Hasher::update), this method is single-threaded. In this author's
1469 /// experience, memory mapping improves single-threaded performance by ~10% for large files
1470 /// that are already in cache. This probably varies between platforms, and as always it's a
1471 /// good idea to benchmark your own use case. In comparison, the multithreaded
1472 /// [`update_mmap_rayon`](Hasher::update_mmap_rayon) method can have a much larger impact on
1473 /// performance.
1474 ///
1475 /// There's a correctness reason that this method takes
1476 /// [`Path`](https://doc.rust-lang.org/stable/std/path/struct.Path.html) instead of
1477 /// [`File`](https://doc.rust-lang.org/std/fs/struct.File.html): reading from a memory-mapped
1478 /// file ignores the seek position of the original file handle (it neither respects the current
1479 /// position nor updates the position). This difference in behavior would've caused
1480 /// `update_mmap` and [`update_reader`](Hasher::update_reader) to give different answers and
1481 /// have different side effects in some cases. Taking a
1482 /// [`Path`](https://doc.rust-lang.org/stable/std/path/struct.Path.html) avoids this problem by
1483 /// making it clear that a new [`File`](https://doc.rust-lang.org/std/fs/struct.File.html) is
1484 /// opened internally.
1485 ///
1486 /// This method requires the `mmap` Cargo feature, which is disabled by default but enabled on
1487 /// [docs.rs](https://docs.rs).
1488 ///
1489 /// # Example
1490 ///
1491 /// ```no_run
1492 /// # use std::io;
1493 /// # use std::path::Path;
1494 /// # fn main() -> io::Result<()> {
1495 /// let path = Path::new("file.dat");
1496 /// let mut hasher = blake3::Hasher::new();
1497 /// hasher.update_mmap(path)?;
1498 /// println!("{}", hasher.finalize());
1499 /// # Ok(())
1500 /// # }
1501 /// ```
1502 #[cfg(feature = "mmap")]
1503 pub fn update_mmap(&mut self, path: impl AsRef<std::path::Path>) -> std::io::Result<&mut Self> {
1504 let file = std::fs::File::open(path.as_ref())?;
1505 if let Some(mmap) = io::maybe_mmap_file(&file)? {
1506 self.update(&mmap);
1507 } else {
1508 io::copy_wide(&file, self)?;
1509 }
1510 Ok(self)
1511 }
1512
1513 /// As [`update_rayon`](Hasher::update_rayon), but reading the contents of a file using
1514 /// memory mapping. This is the default behavior of `b3sum`.
1515 ///
1516 /// For large files that are likely to be in cache, this can be much faster than
1517 /// single-threaded hashing. When benchmarks report that BLAKE3 is 10x or 20x faster than other
1518 /// cryptographic hashes, this is usually what they're measuring. However...
1519 ///
1520 /// **Performance Warning:** There are cases where multithreading hurts performance. The worst
1521 /// case is [a large file on a spinning disk](https://github.com/BLAKE3-team/BLAKE3/issues/31),
1522 /// where simultaneous reads from multiple threads can cause "thrashing" (i.e. the disk spends
1523 /// more time seeking around than reading data). Windows tends to be somewhat worse about this,
1524 /// in part because it's less likely than Linux to keep very large files in cache. More
1525 /// generally, if your CPU cores are already busy, then multithreading will add overhead
1526 /// without improving performance. If your code runs in different environments that you don't
1527 /// control and can't measure, then unfortunately there's no one-size-fits-all answer for
1528 /// whether multithreading is a good idea.
1529 ///
1530 /// The memory mapping behavior of this function is the same as
1531 /// [`update_mmap`](Hasher::update_mmap), and the heuristic for when to fall back to standard
1532 /// file IO might change at any time.
1533 ///
1534 /// This method requires both the `mmap` and `rayon` Cargo features, which are disabled by
1535 /// default but enabled on [docs.rs](https://docs.rs).
1536 ///
1537 /// # Example
1538 ///
1539 /// ```no_run
1540 /// # use std::io;
1541 /// # use std::path::Path;
1542 /// # fn main() -> io::Result<()> {
1543 /// # #[cfg(feature = "rayon")]
1544 /// # {
1545 /// let path = Path::new("big_file.dat");
1546 /// let mut hasher = blake3::Hasher::new();
1547 /// hasher.update_mmap_rayon(path)?;
1548 /// println!("{}", hasher.finalize());
1549 /// # }
1550 /// # Ok(())
1551 /// # }
1552 /// ```
1553 #[cfg(feature = "mmap")]
1554 #[cfg(feature = "rayon")]
1555 pub fn update_mmap_rayon(
1556 &mut self,
1557 path: impl AsRef<std::path::Path>,
1558 ) -> std::io::Result<&mut Self> {
1559 let file = std::fs::File::open(path.as_ref())?;
1560 if let Some(mmap) = io::maybe_mmap_file(&file)? {
1561 self.update_rayon(&mmap);
1562 } else {
1563 io::copy_wide(&file, self)?;
1564 }
1565 Ok(self)
1566 }
1567}
1568
1569// Don't derive(Debug), because the state may be secret.
1570impl fmt::Debug for Hasher {
1571 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1572 f.debug_struct("Hasher")
1573 .field("flags", &self.chunk_state.flags)
1574 .field("platform", &self.chunk_state.platform)
1575 .finish()
1576 }
1577}
1578
1579impl Default for Hasher {
1580 #[inline]
1581 fn default() -> Self {
1582 Self::new()
1583 }
1584}
1585
1586#[cfg(feature = "std")]
1587impl std::io::Write for Hasher {
1588 /// This is equivalent to [`update`](#method.update).
1589 #[inline]
1590 fn write(&mut self, input: &[u8]) -> std::io::Result<usize> {
1591 self.update(input);
1592 Ok(input.len())
1593 }
1594
1595 #[inline]
1596 fn flush(&mut self) -> std::io::Result<()> {
1597 Ok(())
1598 }
1599}
1600
1601#[cfg(feature = "zeroize")]
1602impl Zeroize for Hasher {
1603 fn zeroize(&mut self) {
1604 // Destructuring to trigger compile error as a reminder to update this impl.
1605 let Self {
1606 key,
1607 chunk_state,
1608 cv_stack,
1609 } = self;
1610
1611 key.zeroize();
1612 chunk_state.zeroize();
1613 cv_stack.zeroize();
1614 }
1615}
1616
1617/// An incremental reader for extended output, returned by
1618/// [`Hasher::finalize_xof`](struct.Hasher.html#method.finalize_xof).
1619///
1620/// Shorter BLAKE3 outputs are prefixes of longer ones, and explicitly requesting a short output is
1621/// equivalent to truncating the default-length output. Note that this is a difference between
1622/// BLAKE2 and BLAKE3.
1623///
1624/// # Security notes
1625///
1626/// Outputs shorter than the default length of 32 bytes (256 bits) provide less security. An N-bit
1627/// BLAKE3 output is intended to provide N bits of first and second preimage resistance and N/2
1628/// bits of collision resistance, for any N up to 256. Longer outputs don't provide any additional
1629/// security.
1630///
1631/// Avoid relying on the secrecy of the output offset, that is, the number of output bytes read or
1632/// the arguments to [`seek`](struct.OutputReader.html#method.seek) or
1633/// [`set_position`](struct.OutputReader.html#method.set_position). [_Block-Cipher-Based Tree
1634/// Hashing_ by Aldo Gunsing](https://eprint.iacr.org/2022/283) shows that an attacker who knows
1635/// both the message and the key (if any) can easily determine the offset of an extended output.
1636/// For comparison, AES-CTR has a similar property: if you know the key, you can decrypt a block
1637/// from an unknown position in the output stream to recover its block index. Callers with strong
1638/// secret keys aren't affected in practice, but secret offsets are a [design
1639/// smell](https://en.wikipedia.org/wiki/Design_smell) in any case.
1640#[derive(Clone)]
1641pub struct OutputReader {
1642 inner: Output,
1643 position_within_block: u8,
1644}
1645
1646impl OutputReader {
1647 fn new(inner: Output) -> Self {
1648 Self {
1649 inner,
1650 position_within_block: 0,
1651 }
1652 }
1653
1654 // This helper function handles both the case where the output buffer is
1655 // shorter than one block, and the case where our position_within_block is
1656 // non-zero.
1657 fn fill_one_block(&mut self, buf: &mut &mut [u8]) {
1658 let output_block: [u8; BLOCK_LEN] = self.inner.root_output_block();
1659 let output_bytes = &output_block[self.position_within_block as usize..];
1660 let take = cmp::min(buf.len(), output_bytes.len());
1661 buf[..take].copy_from_slice(&output_bytes[..take]);
1662 self.position_within_block += take as u8;
1663 if self.position_within_block == BLOCK_LEN as u8 {
1664 self.inner.counter += 1;
1665 self.position_within_block = 0;
1666 }
1667 // Advance the dest buffer. mem::take() is a borrowck workaround.
1668 *buf = &mut core::mem::take(buf)[take..];
1669 }
1670
1671 /// Fill a buffer with output bytes and advance the position of the
1672 /// `OutputReader`. This is equivalent to [`Read::read`], except that it
1673 /// doesn't return a `Result`. Both methods always fill the entire buffer.
1674 ///
1675 /// Note that `OutputReader` doesn't buffer output bytes internally, so
1676 /// calling `fill` repeatedly with a short-length or odd-length slice will
1677 /// end up performing the same compression multiple times. If you're
1678 /// reading output in a loop, prefer a slice length that's a multiple of
1679 /// 64.
1680 ///
1681 /// The maximum output size of BLAKE3 is 2<sup>64</sup>-1 bytes. If you try
1682 /// to extract more than that, for example by seeking near the end and
1683 /// reading further, the behavior is unspecified.
1684 ///
1685 /// [`Read::read`]: #method.read
1686 pub fn fill(&mut self, mut buf: &mut [u8]) {
1687 if buf.is_empty() {
1688 return;
1689 }
1690
1691 // If we're partway through a block, try to get to a block boundary.
1692 if self.position_within_block != 0 {
1693 self.fill_one_block(&mut buf);
1694 }
1695
1696 let full_blocks = buf.len() / BLOCK_LEN;
1697 let full_blocks_len = full_blocks * BLOCK_LEN;
1698 if full_blocks > 0 {
1699 debug_assert_eq!(0, self.position_within_block);
1700 self.inner.platform.xof_many(
1701 &self.inner.input_chaining_value,
1702 &self.inner.block,
1703 self.inner.block_len,
1704 self.inner.counter,
1705 self.inner.flags | ROOT,
1706 &mut buf[..full_blocks_len],
1707 );
1708 self.inner.counter += full_blocks as u64;
1709 buf = &mut buf[full_blocks * BLOCK_LEN..];
1710 }
1711
1712 if !buf.is_empty() {
1713 debug_assert!(buf.len() < BLOCK_LEN);
1714 self.fill_one_block(&mut buf);
1715 debug_assert!(buf.is_empty());
1716 }
1717 }
1718
1719 /// Return the current read position in the output stream. This is
1720 /// equivalent to [`Seek::stream_position`], except that it doesn't return
1721 /// a `Result`. The position of a new `OutputReader` starts at 0, and each
1722 /// call to [`fill`] or [`Read::read`] moves the position forward by the
1723 /// number of bytes read.
1724 ///
1725 /// [`Seek::stream_position`]: #method.stream_position
1726 /// [`fill`]: #method.fill
1727 /// [`Read::read`]: #method.read
1728 pub fn position(&self) -> u64 {
1729 self.inner.counter * BLOCK_LEN as u64 + self.position_within_block as u64
1730 }
1731
1732 /// Seek to a new read position in the output stream. This is equivalent to
1733 /// calling [`Seek::seek`] with [`SeekFrom::Start`], except that it doesn't
1734 /// return a `Result`.
1735 ///
1736 /// [`Seek::seek`]: #method.seek
1737 /// [`SeekFrom::Start`]: https://doc.rust-lang.org/std/io/enum.SeekFrom.html
1738 pub fn set_position(&mut self, position: u64) {
1739 self.position_within_block = (position % BLOCK_LEN as u64) as u8;
1740 self.inner.counter = position / BLOCK_LEN as u64;
1741 }
1742}
1743
1744// Don't derive(Debug), because the state may be secret.
1745impl fmt::Debug for OutputReader {
1746 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1747 f.debug_struct("OutputReader")
1748 .field("position", &self.position())
1749 .finish()
1750 }
1751}
1752
1753#[cfg(feature = "std")]
1754impl std::io::Read for OutputReader {
1755 #[inline]
1756 fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
1757 self.fill(buf);
1758 Ok(buf.len())
1759 }
1760}
1761
1762#[cfg(feature = "std")]
1763impl std::io::Seek for OutputReader {
1764 fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
1765 let max_position = u64::max_value() as i128;
1766 let target_position: i128 = match pos {
1767 std::io::SeekFrom::Start(x) => x as i128,
1768 std::io::SeekFrom::Current(x) => self.position() as i128 + x as i128,
1769 std::io::SeekFrom::End(_) => {
1770 return Err(std::io::Error::new(
1771 std::io::ErrorKind::InvalidInput,
1772 "seek from end not supported",
1773 ));
1774 }
1775 };
1776 if target_position < 0 {
1777 return Err(std::io::Error::new(
1778 std::io::ErrorKind::InvalidInput,
1779 "seek before start",
1780 ));
1781 }
1782 self.set_position(cmp::min(target_position, max_position) as u64);
1783 Ok(self.position())
1784 }
1785}
1786
1787#[cfg(feature = "zeroize")]
1788impl Zeroize for OutputReader {
1789 fn zeroize(&mut self) {
1790 // Destructuring to trigger compile error as a reminder to update this impl.
1791 let Self {
1792 inner,
1793 position_within_block,
1794 } = self;
1795
1796 inner.zeroize();
1797 position_within_block.zeroize();
1798 }
1799}