openvm_pairing_guest/bls12_381/pairing.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
use alloc::vec::Vec;
use itertools::izip;
use openvm_algebra_guest::{
field::{ComplexConjugate, FieldExtension},
DivUnsafe, Field,
};
use openvm_ecc_guest::AffinePoint;
#[cfg(target_os = "zkvm")]
use {
crate::pairing::shifted_funct7,
crate::{PairingBaseFunct7, OPCODE, PAIRING_FUNCT3},
core::mem::MaybeUninit,
openvm_platform::custom_insn_r,
openvm_rv32im_guest,
};
use super::{Bls12_381, Fp, Fp12, Fp2};
use crate::pairing::{
Evaluatable, EvaluatedLine, FromLineMType, LineMulMType, MillerStep, MultiMillerLoop,
PairingCheck, PairingCheckError, PairingIntrinsics, UnevaluatedLine,
};
// TODO[jpw]: make macro
impl Evaluatable<Fp, Fp2> for UnevaluatedLine<Fp2> {
fn evaluate(&self, xy_frac: &(Fp, Fp)) -> EvaluatedLine<Fp2> {
#[cfg(not(target_os = "zkvm"))]
{
let (x_over_y, y_inv) = xy_frac;
EvaluatedLine {
b: self.b.mul_base(x_over_y),
c: self.c.mul_base(y_inv),
}
}
#[cfg(target_os = "zkvm")]
{
let mut uninit: MaybeUninit<EvaluatedLine<Fp2>> = MaybeUninit::uninit();
custom_insn_r!(
OPCODE,
PAIRING_FUNCT3,
shifted_funct7::<Bls12_381>(PairingBaseFunct7::EvaluateLine),
uninit.as_mut_ptr(),
self as *const UnevaluatedLine<Fp2>,
xy_frac as *const (Fp, Fp)
);
unsafe { uninit.assume_init() }
}
}
}
impl FromLineMType<Fp2> for Fp12 {
fn from_evaluated_line_m_type(line: EvaluatedLine<Fp2>) -> Fp12 {
Fp12::from_coeffs([line.c, Fp2::ZERO, line.b, Fp2::ONE, Fp2::ZERO, Fp2::ZERO])
}
}
// TODO[jpw]: make this into a macro depending on P::PAIRING_IDX when we have more curves
impl LineMulMType<Fp2, Fp12> for Bls12_381 {
/// Multiplies two lines in 023-form to get an element in 02345-form
fn mul_023_by_023(l0: &EvaluatedLine<Fp2>, l1: &EvaluatedLine<Fp2>) -> [Fp2; 5] {
#[cfg(not(target_os = "zkvm"))]
{
let b0 = &l0.b;
let c0 = &l0.c;
let b1 = &l1.b;
let c1 = &l1.c;
// where w⁶ = xi
// l0 * l1 = c0c1 + (c0b1 + c1b0)w² + (c0 + c1)w³ + (b0b1)w⁴ + (b0 +b1)w⁵ + w⁶
// = (c0c1 + xi) + (c0b1 + c1b0)w² + (c0 + c1)w³ + (b0b1)w⁴ + (b0 + b1)w⁵
let x0 = c0 * c1 + Bls12_381::XI;
let x2 = c0 * b1 + c1 * b0;
let x3 = c0 + c1;
let x4 = b0 * b1;
let x5 = b0 + b1;
[x0, x2, x3, x4, x5]
}
#[cfg(target_os = "zkvm")]
{
let mut uninit: MaybeUninit<[Fp2; 5]> = MaybeUninit::uninit();
custom_insn_r!(
OPCODE,
PAIRING_FUNCT3,
shifted_funct7::<Bls12_381>(PairingBaseFunct7::Mul023By023),
uninit.as_mut_ptr(),
l0 as *const EvaluatedLine<Fp2>,
l1 as *const EvaluatedLine<Fp2>
);
unsafe { uninit.assume_init() }
}
}
/// Multiplies a line in 02345-form with a Fp12 element to get an Fp12 element
fn mul_by_023(f: &Fp12, l: &EvaluatedLine<Fp2>) -> Fp12 {
Fp12::from_evaluated_line_m_type(l.clone()) * f
}
/// Multiplies a line in 02345-form with a Fp12 element to get an Fp12 element
fn mul_by_02345(f: &Fp12, x: &[Fp2; 5]) -> Fp12 {
#[cfg(not(target_os = "zkvm"))]
{
// we update the order of the coefficients to match the Fp12 coefficient ordering:
// Fp12 {
// c0: Fp6 {
// c0: x0,
// c1: x2,
// c2: x4,
// },
// c1: Fp6 {
// c0: x1,
// c1: x3,
// c2: x5,
// },
// }
let o0 = &x[0]; // coeff x0
let o1 = &x[1]; // coeff x2
let o2 = &x[3]; // coeff x4
let o4 = &x[2]; // coeff x3
let o5 = &x[4]; // coeff x5
let xi = &Bls12_381::XI;
let self_coeffs = f.clone().to_coeffs();
let s0 = &self_coeffs[0];
let s1 = &self_coeffs[2];
let s2 = &self_coeffs[4];
let s3 = &self_coeffs[1];
let s4 = &self_coeffs[3];
let s5 = &self_coeffs[5];
// NOTE[yj]: Hand-calculated multiplication for Fp12 * 02345 ∈ Fp2; this is likely not the most efficient implementation
// c00 = cs0co0 + xi(cs1co2 + cs2co1 + cs3co5 + cs4co4)
// c01 = cs0co1 + cs1co0 + xi(cs2co2 + cs4co5 + cs5co4)
// c02 = cs0co2 + cs1co1 + cs2co0 + cs3co4 + xi(cs5co5)
// c10 = cs3co0 + xi(cs1co5 + cs2co4 + cs4co2 + cs5co1)
// c11 = cs0co4 + cs3co1 + cs4co0 + xi(cs2co5 + cs5co2)
// c12 = cs0co5 + cs1co4 + cs3co2 + cs4co1 + cs5co0
// where cs*: self.c*
let c00 = s0 * o0 + xi * &(s1 * o2 + s2 * o1 + s3 * o5 + s4 * o4);
let c01 = s0 * o1 + s1 * o0 + xi * &(s2 * o2 + s4 * o5 + s5 * o4);
let c02 = s0 * o2 + s1 * o1 + s2 * o0 + s3 * o4 + xi * &(s5 * o5);
let c10 = s3 * o0 + xi * &(s1 * o5 + s2 * o4 + s4 * o2 + s5 * o1);
let c11 = s0 * o4 + s3 * o1 + s4 * o0 + xi * &(s2 * o5 + s5 * o2);
let c12 = s0 * o5 + s1 * o4 + s3 * o2 + s4 * o1 + s5 * o0;
Fp12::from_coeffs([c00, c10, c01, c11, c02, c12])
}
#[cfg(target_os = "zkvm")]
{
let mut uninit: MaybeUninit<Fp12> = MaybeUninit::uninit();
custom_insn_r!(
OPCODE,
PAIRING_FUNCT3,
shifted_funct7::<Bls12_381>(PairingBaseFunct7::MulBy02345),
uninit.as_mut_ptr(),
f as *const Fp12,
x as *const [Fp2; 5]
);
unsafe { uninit.assume_init() }
}
}
}
#[allow(non_snake_case)]
impl MultiMillerLoop for Bls12_381 {
type Fp = Fp;
type Fp12 = Fp12;
const SEED_ABS: u64 = 0xd201000000010000;
const PSEUDO_BINARY_ENCODING: &[i8] = &[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
1, 0, 1, 1,
];
fn evaluate_lines_vec(f: Self::Fp12, lines: Vec<EvaluatedLine<Self::Fp2>>) -> Self::Fp12 {
let mut f = f;
let mut lines = lines;
if lines.len() % 2 == 1 {
f = Self::mul_by_023(&f, &lines.pop().unwrap());
}
for chunk in lines.chunks(2) {
if let [line0, line1] = chunk {
let prod = Self::mul_023_by_023(line0, line1);
f = Self::mul_by_02345(&f, &prod);
} else {
panic!("lines.len() % 2 should be 0 at this point");
}
}
f
}
/// The expected output of this function when running the Miller loop with embedded exponent is c^3 * l_{3Q}
fn pre_loop(
Q_acc: Vec<AffinePoint<Self::Fp2>>,
Q: &[AffinePoint<Self::Fp2>],
c: Option<Self::Fp12>,
xy_fracs: &[(Self::Fp, Self::Fp)],
) -> (Self::Fp12, Vec<AffinePoint<Self::Fp2>>) {
let mut f = if let Some(mut c) = c {
// for the miller loop with embedded exponent, f will be set to c at the beginning of the function, and we
// will multiply by c again due to the last two values of the pseudo-binary encoding (BN12_381_PBE) being 1.
// Therefore, the final value of f at the end of this block is c^3.
let mut c3 = c.clone();
c.square_assign();
c3 *= &c;
c3
} else {
Self::Fp12::ONE
};
let mut Q_acc = Q_acc;
// Special case the first iteration of the Miller loop with pseudo_binary_encoding = 1:
// this means that the first step is a double and add, but we need to separate the two steps since the optimized
// `miller_double_and_add_step` will fail because Q_acc is equal to Q_signed on the first iteration
let (Q_out_double, lines_2S) = Q_acc
.into_iter()
.map(|Q| Self::miller_double_step(&Q))
.unzip::<_, _, Vec<_>, Vec<_>>();
Q_acc = Q_out_double;
let mut initial_lines = Vec::<EvaluatedLine<Self::Fp2>>::new();
let lines_iter = izip!(lines_2S.iter(), xy_fracs.iter());
for (line_2S, xy_frac) in lines_iter {
let line = line_2S.evaluate(xy_frac);
initial_lines.push(line);
}
let (Q_out_add, lines_S_plus_Q) = Q_acc
.iter()
.zip(Q.iter())
.map(|(Q_acc, Q)| Self::miller_add_step(Q_acc, Q))
.unzip::<_, _, Vec<_>, Vec<_>>();
Q_acc = Q_out_add;
let lines_iter = izip!(lines_S_plus_Q.iter(), xy_fracs.iter());
for (lines_S_plus_Q, xy_frac) in lines_iter {
let line = lines_S_plus_Q.evaluate(xy_frac);
initial_lines.push(line);
}
f = Self::evaluate_lines_vec(f, initial_lines);
(f, Q_acc)
}
/// After running the main body of the Miller loop, we conjugate f due to the curve seed x being negative.
fn post_loop(
f: &Self::Fp12,
Q_acc: Vec<AffinePoint<Self::Fp2>>,
_Q: &[AffinePoint<Self::Fp2>],
_c: Option<Self::Fp12>,
_xy_fracs: &[(Self::Fp, Self::Fp)],
) -> (Self::Fp12, Vec<AffinePoint<Self::Fp2>>) {
// Conjugate for negative component of the seed
let mut f = f.clone();
f.conjugate_assign();
(f, Q_acc)
}
}
#[allow(non_snake_case)]
impl PairingCheck for Bls12_381 {
type Fp = Fp;
type Fp2 = Fp2;
type Fp12 = Fp12;
#[allow(unused_variables)]
fn pairing_check_hint(
P: &[AffinePoint<Self::Fp>],
Q: &[AffinePoint<Self::Fp2>],
) -> (Self::Fp12, Self::Fp12) {
#[cfg(not(target_os = "zkvm"))]
{
todo!()
}
#[cfg(target_os = "zkvm")]
{
let hint = MaybeUninit::<(Fp12, Fp12)>::uninit();
// We do not rely on the slice P's memory layout since rust does not guarantee it across compiler versions.
let p_fat_ptr = (P.as_ptr() as u32, P.len() as u32);
let q_fat_ptr = (Q.as_ptr() as u32, Q.len() as u32);
unsafe {
core::arch::asm!(
".insn r {opcode}, {funct3}, {funct7}, x0, {rs1}, {rs2}",
opcode = const OPCODE,
funct3 = const PAIRING_FUNCT3,
funct7 = const ((Bls12_381::PAIRING_IDX as u8) * PairingBaseFunct7::PAIRING_MAX_KINDS + PairingBaseFunct7::HintFinalExp as u8),
rs1 = in(reg) &p_fat_ptr,
rs2 = in(reg) &q_fat_ptr
);
let mut ptr = hint.as_ptr() as *const u8;
// NOTE[jpw]: this loop could be unrolled using seq_macro and hint_store_u32(ptr, $imm)
for _ in (0..48 * 12 * 2).step_by(4) {
openvm_rv32im_guest::hint_store_u32!(ptr, 0);
ptr = ptr.add(4);
}
hint.assume_init()
}
}
}
fn pairing_check(
P: &[AffinePoint<Self::Fp>],
Q: &[AffinePoint<Self::Fp2>],
) -> Result<(), PairingCheckError> {
let (c, s) = Self::pairing_check_hint(P, Q);
// f * s = c^{q - x}
// f * s = c^q * c^-x
// f * c^x * c^-q * s = 1,
// where fc = f * c'^x (embedded Miller loop with c conjugate inverse),
// and the curve seed x = -0xd201000000010000
// the miller loop computation includes a conjugation at the end because the value of the
// seed is negative, so we need to conjugate the miller loop input c as c'. We then substitute
// y = -x to get c^-y and finally compute c'^-y as input to the miller loop:
// f * c'^-y * c^-q * s = 1
let c_q = FieldExtension::frobenius_map(&c, 1);
let c_conj_inv = Fp12::ONE.div_unsafe(&c.conjugate());
// fc = f_{Miller,x,Q}(P) * c^{x}
// where
// fc = conjugate( f_{Miller,-x,Q}(P) * c'^{-x} ), with c' denoting the conjugate of c
let fc = Self::multi_miller_loop_embedded_exp(P, Q, Some(c_conj_inv));
if fc * s == c_q {
Ok(())
} else {
Err(PairingCheckError)
}
}
}