p3_util/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//! Various simple utilities.

#![no_std]

extern crate alloc;

use alloc::string::String;
use alloc::vec::Vec;
use core::any::type_name;
use core::hint::unreachable_unchecked;
use core::mem;
use core::mem::MaybeUninit;

pub mod array_serialization;
pub mod linear_map;

/// Computes `ceil(log_2(n))`.
#[must_use]
pub const fn log2_ceil_usize(n: usize) -> usize {
    (usize::BITS - n.saturating_sub(1).leading_zeros()) as usize
}

#[must_use]
pub fn log2_ceil_u64(n: u64) -> u64 {
    (u64::BITS - n.saturating_sub(1).leading_zeros()).into()
}

/// Computes `log_2(n)`
///
/// # Panics
/// Panics if `n` is not a power of two.
#[must_use]
#[inline]
pub fn log2_strict_usize(n: usize) -> usize {
    let res = n.trailing_zeros();
    assert_eq!(n.wrapping_shr(res), 1, "Not a power of two: {n}");
    res as usize
}

/// Returns `[0, ..., N - 1]`.
#[must_use]
pub const fn indices_arr<const N: usize>() -> [usize; N] {
    let mut indices_arr = [0; N];
    let mut i = 0;
    while i < N {
        indices_arr[i] = i;
        i += 1;
    }
    indices_arr
}

#[inline]
pub const fn reverse_bits(x: usize, n: usize) -> usize {
    reverse_bits_len(x, n.trailing_zeros() as usize)
}

#[inline]
pub const fn reverse_bits_len(x: usize, bit_len: usize) -> usize {
    // NB: The only reason we need overflowing_shr() here as opposed
    // to plain '>>' is to accommodate the case n == num_bits == 0,
    // which would become `0 >> 64`. Rust thinks that any shift of 64
    // bits causes overflow, even when the argument is zero.
    x.reverse_bits()
        .overflowing_shr(usize::BITS - bit_len as u32)
        .0
}

/// Permutes `arr` such that each index is mapped to its reverse in binary.
pub fn reverse_slice_index_bits<F>(vals: &mut [F]) {
    let n = vals.len();
    if n == 0 {
        return;
    }
    let log_n = log2_strict_usize(n);

    for i in 0..n {
        let j = reverse_bits_len(i, log_n);
        if i < j {
            vals.swap(i, j);
        }
    }
}

#[inline(always)]
pub fn assume(p: bool) {
    debug_assert!(p);
    if !p {
        unsafe {
            unreachable_unchecked();
        }
    }
}

/// Try to force Rust to emit a branch. Example:
///
/// ```no_run
/// let x = 100;
/// if x > 20 {
///     println!("x is big!");
///     p3_util::branch_hint();
/// } else {
///     println!("x is small!");
/// }
/// ```
///
/// This function has no semantics. It is a hint only.
#[inline(always)]
pub fn branch_hint() {
    // NOTE: These are the currently supported assembly architectures. See the
    // [nightly reference](https://doc.rust-lang.org/nightly/reference/inline-assembly.html) for
    // the most up-to-date list.
    #[cfg(any(
        target_arch = "aarch64",
        target_arch = "arm",
        target_arch = "riscv32",
        target_arch = "riscv64",
        target_arch = "x86",
        target_arch = "x86_64",
    ))]
    unsafe {
        core::arch::asm!("", options(nomem, nostack, preserves_flags));
    }
}

/// Convenience methods for Vec.
pub trait VecExt<T> {
    /// Push `elem` and return a reference to it.
    fn pushed_ref(&mut self, elem: T) -> &T;
    /// Push `elem` and return a mutable reference to it.
    fn pushed_mut(&mut self, elem: T) -> &mut T;
}

impl<T> VecExt<T> for alloc::vec::Vec<T> {
    fn pushed_ref(&mut self, elem: T) -> &T {
        self.push(elem);
        self.last().unwrap()
    }
    fn pushed_mut(&mut self, elem: T) -> &mut T {
        self.push(elem);
        self.last_mut().unwrap()
    }
}

pub fn transpose_vec<T>(v: Vec<Vec<T>>) -> Vec<Vec<T>> {
    assert!(!v.is_empty());
    let len = v[0].len();
    let mut iters: Vec<_> = v.into_iter().map(|n| n.into_iter()).collect();
    (0..len)
        .map(|_| {
            iters
                .iter_mut()
                .map(|n| n.next().unwrap())
                .collect::<Vec<T>>()
        })
        .collect()
}

/// Return a String containing the name of T but with all the crate
/// and module prefixes removed.
pub fn pretty_name<T>() -> String {
    let name = type_name::<T>();
    let mut result = String::new();
    for qual in name.split_inclusive(&['<', '>', ',']) {
        result.push_str(qual.split("::").last().unwrap());
    }
    result
}

/// A C-style buffered input reader, similar to
/// `std::iter::Iterator::next_chunk()` from nightly.
///
/// Unsafe because the returned array may contain uninitialised
/// elements.
#[inline]
unsafe fn iter_next_chunk<const BUFLEN: usize, I: Iterator>(
    iter: &mut I,
) -> ([I::Item; BUFLEN], usize)
where
    I::Item: Copy,
{
    let mut buf = unsafe {
        let t = [const { MaybeUninit::<I::Item>::uninit() }; BUFLEN];
        // We are forced to use `transmute_copy` here instead of
        // `transmute` because `BUFLEN` is a const generic parameter.
        // The compiler *should* be smart enough not to emit a copy though.
        core::mem::transmute_copy::<_, [I::Item; BUFLEN]>(&t)
    };
    let mut i = 0;

    // Read BUFLEN values from `iter` into `buf` at a time.
    for c in iter {
        // Copy the next Item into `buf`.
        unsafe {
            *buf.get_unchecked_mut(i) = c;
            i = i.unchecked_add(1);
        }
        // If `buf` is full
        if i == BUFLEN {
            break;
        }
    }
    (buf, i)
}

/// Split an interator into small arrays and apply `func` to each.
///
/// Repeatedly read `BUFLEN` elements from `input` into an array and
/// pass the array to `func` as a slice. If less than `BUFLEN`
/// elements are remaining, that smaller slice is passed to `func` (if
/// it is non-empty) and the function returns.
#[inline]
pub fn apply_to_chunks<const BUFLEN: usize, I, H>(input: I, mut func: H)
where
    I: IntoIterator<Item = u8>,
    H: FnMut(&[I::Item]),
{
    let mut iter = input.into_iter();
    loop {
        let (buf, n) = unsafe { iter_next_chunk::<BUFLEN, _>(&mut iter) };
        if n == 0 {
            break;
        }
        func(unsafe { buf.get_unchecked(..n) });
    }
}

/// Converts a vector of one type to one of another type.
///
/// This is useful to convert between things like `Vec<u32>` and `Vec<[u32; 10]>`, for example.
/// This is roughly like a transmutation, except that we also adjust the vector's length
/// and capacity based on the sizes of the two types.
///
/// # Safety
/// In addition to the usual safety considerations around transmutation, the caller must ensure that
/// the two types have the same alignment, that one of their sizes is a multiple of the other.
#[inline(always)]
pub unsafe fn convert_vec<T, U>(mut vec: Vec<T>) -> Vec<U> {
    let ptr = vec.as_mut_ptr() as *mut U;
    let len_bytes = vec.len() * size_of::<T>();
    let cap_bytes = vec.capacity() * size_of::<T>();

    assert_eq!(align_of::<T>(), align_of::<U>());
    assert_eq!(len_bytes % size_of::<U>(), 0);
    assert_eq!(cap_bytes % size_of::<U>(), 0);

    let new_len = len_bytes / size_of::<U>();
    let new_cap = cap_bytes / size_of::<U>();
    mem::forget(vec);
    Vec::from_raw_parts(ptr, new_len, new_cap)
}

#[cfg(test)]
mod tests {
    use alloc::vec;

    use super::*;

    #[test]
    fn test_reverse_bits_len() {
        assert_eq!(reverse_bits_len(0b0000000000, 10), 0b0000000000);
        assert_eq!(reverse_bits_len(0b0000000001, 10), 0b1000000000);
        assert_eq!(reverse_bits_len(0b1000000000, 10), 0b0000000001);
        assert_eq!(reverse_bits_len(0b00000, 5), 0b00000);
        assert_eq!(reverse_bits_len(0b01011, 5), 0b11010);
    }

    #[test]
    fn test_reverse_index_bits() {
        let mut arg = vec![10, 20, 30, 40];
        reverse_slice_index_bits(&mut arg);
        assert_eq!(arg, vec![10, 30, 20, 40]);

        let mut input256: Vec<u64> = (0..256).collect();
        #[rustfmt::skip]
        let output256: Vec<u64> = vec![
            0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
            0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
            0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
            0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
            0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
            0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
            0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
            0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
            0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
            0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
            0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
            0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
            0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
            0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
            0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
            0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
        ];
        reverse_slice_index_bits(&mut input256[..]);
        assert_eq!(input256, output256);
    }
}