halo2curves/
curve.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
//! This module contains the `Curve`/`CurveAffine` abstractions that allow us to
//! write code that generalizes over a pair of groups.

use core::ops::{Add, Mul, Sub};

use group::prime::{PrimeCurve, PrimeCurveAffine};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};

/// This trait is a common interface for dealing with elements of an elliptic
/// curve group in a "projective" form, where that arithmetic is usually more
/// efficient.
///
/// Requires the `alloc` feature flag because of `hash_to_curve`.
pub trait CurveExt:
    PrimeCurve<Affine = <Self as CurveExt>::AffineExt>
    + group::Group<Scalar = <Self as CurveExt>::ScalarExt>
    + Default
    + ConditionallySelectable
    + ConstantTimeEq
    + From<<Self as PrimeCurve>::Affine>
{
    /// The scalar field of this elliptic curve.
    type ScalarExt: ff::WithSmallOrderMulGroup<3>;
    /// The base field over which this elliptic curve is constructed.
    type Base: ff::WithSmallOrderMulGroup<3>;
    /// The affine version of the curve
    type AffineExt: CurveAffine<CurveExt = Self, ScalarExt = <Self as CurveExt>::ScalarExt>
        + Mul<Self::ScalarExt, Output = Self>
        + for<'r> Mul<Self::ScalarExt, Output = Self>;

    /// CURVE_ID used for hash-to-curve.
    const CURVE_ID: &'static str;

    /// Apply the curve endomorphism by multiplying the x-coordinate
    /// by an element of multiplicative order 3.
    fn endo(&self) -> Self;

    /// Return the Jacobian coordinates of this point.
    fn jacobian_coordinates(&self) -> (Self::Base, Self::Base, Self::Base);

    /// Requests a hasher that accepts messages and returns near-uniformly
    /// distributed elements in the group, given domain prefix `domain_prefix`.
    ///
    /// This method is suitable for use as a random oracle.
    #[allow(clippy::type_complexity)]
    fn hash_to_curve<'a>(domain_prefix: &'a str) -> Box<dyn Fn(&[u8]) -> Self + 'a>;

    /// Returns whether or not this element is on the curve; should
    /// always be true unless an "unchecked" API was used.
    fn is_on_curve(&self) -> Choice;

    /// Returns the curve constant a.
    fn a() -> Self::Base;

    /// Returns the curve constant b.
    fn b() -> Self::Base;

    /// Obtains a point given Jacobian coordinates $X : Y : Z$, failing
    /// if the coordinates are not on the curve.
    fn new_jacobian(x: Self::Base, y: Self::Base, z: Self::Base) -> CtOption<Self>;
}
/// This trait is the affine counterpart to `Curve` and is used for
/// serialization, storage in memory, and inspection of $x$ and $y$ coordinates.
///
/// Requires the `alloc` feature flag because of `hash_to_curve` on
/// [`CurveExt`].
pub trait CurveAffine:
    PrimeCurveAffine<
        Scalar = <Self as CurveAffine>::ScalarExt,
        Curve = <Self as CurveAffine>::CurveExt,
    > + Default
    + Add<Output = <Self as PrimeCurveAffine>::Curve>
    + Sub<Output = <Self as PrimeCurveAffine>::Curve>
    + ConditionallySelectable
    + ConstantTimeEq
    + From<<Self as PrimeCurveAffine>::Curve>
{
    /// The scalar field of this elliptic curve.
    type ScalarExt: ff::WithSmallOrderMulGroup<3> + Ord;
    /// The base field over which this elliptic curve is constructed.
    type Base: ff::WithSmallOrderMulGroup<3> + Ord;
    /// The projective form of the curve
    type CurveExt: CurveExt<AffineExt = Self, ScalarExt = <Self as CurveAffine>::ScalarExt>;

    /// Gets the coordinates of this point.
    ///
    /// Returns None if this is the identity.
    fn coordinates(&self) -> CtOption<Coordinates<Self>>;

    /// Obtains a point given $(x, y)$, failing if it is not on the
    /// curve.
    fn from_xy(x: Self::Base, y: Self::Base) -> CtOption<Self>;

    /// Returns whether or not this element is on the curve; should
    /// always be true unless an "unchecked" API was used.
    fn is_on_curve(&self) -> Choice;

    /// Returns the curve constant $a$.
    fn a() -> Self::Base;

    /// Returns the curve constant $b$.
    fn b() -> Self::Base;
}

/// The affine coordinates of a point on an elliptic curve.
#[derive(Clone, Copy, Debug, Default)]
pub struct Coordinates<C: CurveAffine> {
    pub(crate) x: C::Base,
    pub(crate) y: C::Base,
}

impl<C: CurveAffine> Coordinates<C> {
    /// Obtains a `Coordinates` value given $(x, y)$, failing if it is not on
    /// the curve.
    pub fn from_xy(x: C::Base, y: C::Base) -> CtOption<Self> {
        // We use CurveAffine::from_xy to validate the coordinates.
        C::from_xy(x, y).map(|_| Coordinates { x, y })
    }
    /// Returns the x-coordinate.
    ///
    /// Equivalent to `Coordinates::u`.
    pub fn x(&self) -> &C::Base {
        &self.x
    }

    /// Returns the y-coordinate.
    ///
    /// Equivalent to `Coordinates::v`.
    pub fn y(&self) -> &C::Base {
        &self.y
    }

    /// Returns the u-coordinate.
    ///
    /// Equivalent to `Coordinates::x`.
    pub fn u(&self) -> &C::Base {
        &self.x
    }

    /// Returns the v-coordinate.
    ///
    /// Equivalent to `Coordinates::y`.
    pub fn v(&self) -> &C::Base {
        &self.y
    }
}

impl<C: CurveAffine> ConditionallySelectable for Coordinates<C> {
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        Coordinates {
            x: C::Base::conditional_select(&a.x, &b.x, choice),
            y: C::Base::conditional_select(&a.y, &b.y, choice),
        }
    }
}