halo2curves/pluto_eris/fp6.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
use super::fp::Fp;
use super::fp2::Fp2;
use crate::ff_ext::{
cubic::{CubicExtField, CubicExtFieldArith, CubicSparseMul},
ExtField,
};
use ff::Field;
// -BETA is a cubic non-residue in Fp2. Fp6 = Fp2[X]/(X^3 + BETA)
// We introduce the variable v such that v^3 = -BETA
// BETA = - 57/(z+3)
crate::impl_binops_additive!(Fp6, Fp6);
crate::impl_binops_multiplicative!(Fp6, Fp6);
crate::impl_binops_calls!(Fp6);
crate::impl_sum_prod!(Fp6);
pub type Fp6 = CubicExtField<Fp2>;
impl CubicExtFieldArith for Fp6 {
type Base = Fp2;
}
impl CubicSparseMul for Fp6 {
type Base = Fp2;
}
impl ExtField for Fp6 {
const NON_RESIDUE: Self = Fp6::new(Fp2::ZERO, Fp2::ONE, Fp2::ZERO);
fn frobenius_map(&mut self, power: usize) {
self.c0.frobenius_map(power);
self.c1.frobenius_map(power);
self.c2.frobenius_map(power);
self.c1.mul_assign(&FROBENIUS_COEFF_FP6_C1[power % 6]);
self.c2.mul_assign(&FROBENIUS_COEFF_FP6_C2[power % 6]);
}
fn mul_by_nonresidue(self: &Fp6) -> Fp6 {
let c0 = self.c2.mul_by_nonresidue();
let c1 = self.c0;
let c2 = self.c1;
Self { c0, c1, c2 }
}
}
/// Fp2 coefficients for the efficient computation of Frobenius Endomorphism in Fp6.
pub(crate) const FROBENIUS_COEFF_FP6_C1: [Fp2; 6] = [
// Fp2(v^3)**(((p^0) - 1) / 3)
Fp2::ONE,
// Fp2(v^3)**(((p^1) - 1) / 3)
Fp2 {
// 0x120de97f024c55bc3bc0d351f4c70da1e3886170077a50986f93678bc921dcd5041bc4bb14cc42dc52e787634eccc335a001825382850d03
c0: Fp::from_raw([
0xa001825382850d03,
0x52e787634eccc335,
0x041bc4bb14cc42dc,
0x6f93678bc921dcd5,
0xe3886170077a5098,
0x3bc0d351f4c70da1,
0x120de97f024c55bc,
]),
// 0x2096f3f804d973afd82becc2ef081b76132461908eadbe3da1a7f5502b7091965efa1ddf4658080413be1b7cd3c9ea0e2772fea378a9b322
c1: Fp::from_raw([
0x2772fea378a9b322,
0x13be1b7cd3c9ea0e,
0x5efa1ddf46580804,
0xa1a7f5502b709196,
0x132461908eadbe3d,
0xd82becc2ef081b76,
0x2096f3f804d973af,
]),
},
// Fp2(v^3)**(((p^2) - 1) / 3)
Fp2 {
// 0x480000000000360001c950000d7ee0e4a803c956d01c903d720dc8ad8b38dffaf50c100004c37ffffffe
c0: Fp::from_raw([
0x100004c37ffffffe,
0xc8ad8b38dffaf50c,
0xc956d01c903d720d,
0x50000d7ee0e4a803,
0x00000000360001c9,
0x0000000000004800,
0x0000000000000000,
]),
c1: Fp::ZERO,
},
// Fp2(v^3)**(((p^3) - 1) / 3)
Fp2 {
// 0x1f9cd069c59f50a72511749de232911d833b798e78bd98c02913e38315a71c287cd52ae30d09b78a8b43b17b4c3ea938a04518fa783eb497
c0: Fp::from_raw([
0xa04518fa783eb497,
0x8b43b17b4c3ea938,
0x7cd52ae30d09b78a,
0x2913e38315a71c28,
0x833b798e78bd98c0,
0x2511749de232911d,
0x1f9cd069c59f50a7,
]),
// 0x23affd628747cbaec26943f93dc9eab63f4af36699fe6d74c0aa2122aa7cb689e8faacb3479a973a4a728fcb77b150ee77240d4066e42ac5
c1: Fp::from_raw([
0x77240d4066e42ac5,
0x4a728fcb77b150ee,
0xe8faacb3479a973a,
0xc0aa2122aa7cb689,
0x3f4af36699fe6d74,
0xc26943f93dc9eab6,
0x23affd628747cbae,
]),
},
// Fp2(v^3)**(((p^4) - 1) / 3)
Fp2 {
// 0x24000000000024000130e0000d7f28e4a803ca76be3924a5f43f8cddf9a5c4781b50d5e1ff708dc8d9fa5d8a200bc4398ffff80f80000002
c0: Fp::from_raw([
0x8ffff80f80000002,
0xd9fa5d8a200bc439,
0x1b50d5e1ff708dc8,
0xf43f8cddf9a5c478,
0xa803ca76be3924a5,
0x0130e0000d7f28e4,
0x2400000000002400,
]),
c1: Fp::ZERO,
},
// Fp2(v^3)**(((p^5) - 1) / 3)
Fp2 {
// 0x165546173814a19ca18f781044054309e943b9ef683a6385efd7e9aad64bdffa485e5c5efd860546672498a76502061cffb95e58053c3e68
c0: Fp::from_raw([
0xffb95e58053c3e68,
0x672498a76502061c,
0x485e5c5efd860546,
0xefd7e9aad64bdffa,
0xe943b9ef683a6385,
0xa18f781044054309,
0x165546173814a19c,
]),
// 0x3b90ea573df08a167cc8f43ee2cdb9cfd983ff6bfc6212c262d1e46df2790d7815a816a9169606ee71f263db492378ea168edc22072221b
c1: Fp::from_raw([
0xa168edc22072221b,
0xe71f263db492378e,
0x815a816a9169606e,
0x262d1e46df2790d7,
0xfd983ff6bfc6212c,
0x67cc8f43ee2cdb9c,
0x03b90ea573df08a1,
]),
},
];
/// Fp2 coefficients for the efficient computation of Frobenius Endomorphism in Fp6.
pub(crate) const FROBENIUS_COEFF_FP6_C2: [Fp2; 6] = [
// Fp2(v^3)**(((2p^0) - 2) / 3)
Fp2::ONE,
// Fp2(v^3)**(((2p^1) - 2) / 3)
Fp2 {
// 0x93733692ce3cdcfc34610bac6bd22c4dc590efb038c82998c9549048e7b424cc00e17ffb4a61950d0ec132a7b38f09db0a818e422737f7c
c0: Fp::from_raw([
0xb0a818e422737f7c,
0xd0ec132a7b38f09d,
0xc00e17ffb4a61950,
0x8c9549048e7b424c,
0xdc590efb038c8299,
0xc34610bac6bd22c4,
0x093733692ce3cdcf,
]),
// 0x12cb19daadc92882ba3593aa6f3e6bf426f29bd46039e3036f61d0bd35f39ebecdac3209d9df546061c90b4940d9031c240ce398421dc7dc
c1: Fp::from_raw([
0x240ce398421dc7dc,
0x61c90b4940d9031c,
0xcdac3209d9df5460,
0x6f61d0bd35f39ebe,
0x26f29bd46039e303,
0xba3593aa6f3e6bf4,
0x12cb19daadc92882,
]),
},
// Fp2(v^3)**(((2p^2) - 2) / 3)
Fp2 {
// 0x24000000000024000130e0000d7f28e4a803ca76be3924a5f43f8cddf9a5c4781b50d5e1ff708dc8d9fa5d8a200bc4398ffff80f80000002
c0: Fp::from_raw([
0x8ffff80f80000002,
0xd9fa5d8a200bc439,
0x1b50d5e1ff708dc8,
0xf43f8cddf9a5c478,
0xa803ca76be3924a5,
0x0130e0000d7f28e4,
0x2400000000002400,
]),
c1: Fp::ZERO,
},
// Fp2(v^3)**(((2p^3) - 2) / 3)
Fp2 {
// 0x85cc83a7eeba2ef5f7dd2f9f1405312b2ce0cbc85b8561e1657aaf1e85b82299aa5ace8b26b78d88f57e1c7a87f75556885980d6c8d2186
c0: Fp::from_raw([
0x6885980d6c8d2186,
0x8f57e1c7a87f7555,
0x9aa5ace8b26b78d8,
0x1657aaf1e85b8229,
0xb2ce0cbc85b8561e,
0x5f7dd2f9f1405312,
0x085cc83a7eeba2ef,
]),
// 0xda3357ee4e6a9836af75e8ec0dbd23e7abc03d404620899ee0ea8b684b9400d58d5ebe487e523680bbe8a0dd9ea1d312bca2a953ab51c9b
c1: Fp::from_raw([
0x2bca2a953ab51c9b,
0x0bbe8a0dd9ea1d31,
0x58d5ebe487e52368,
0xee0ea8b684b9400d,
0x7abc03d404620899,
0x6af75e8ec0dbd23e,
0x0da3357ee4e6a983,
]),
},
// Fp2(v^3)**(((2p^4) - 2) / 3)
Fp2 {
// 0x480000000000360001c950000d7ee0e4a803c956d01c903d720dc8ad8b38dffaf50c100004c37ffffffe
c0: Fp::from_raw([
0x100004c37ffffffe,
0xc8ad8b38dffaf50c,
0xc956d01c903d720d,
0x50000d7ee0e4a803,
0x00000000360001c9,
0x0000000000004800,
0x0000000000000000,
]),
c1: Fp::ZERO,
},
// Fp2(v^3)**(((2p^5) - 2) / 3)
Fp2 {
// 0x126c045c5430b340de6cfc4b5581fb0d18dcaebf6af44db7a152a66663b3a80589f3e116289c6dad4263f3d0dc4e535286d24be170ff5eff
c0: Fp::from_raw([
0x86d24be170ff5eff,
0x4263f3d0dc4e5352,
0x89f3e116289c6dad,
0xa152a66663b3a805,
0x18dcaebf6af44db7,
0xde6cfc4b5581fb0d,
0x126c045c5430b340,
]),
// 0x391b0a66d5051f9dc03edc6dd6532b206552ace8f9d3ad1e6cf20e91fdd8dafbe2588102de9880e3520536be54398f85028eea5832d1b8a
c1: Fp::from_raw([
0x5028eea5832d1b8a,
0x3520536be54398f8,
0xbe2588102de9880e,
0xe6cf20e91fdd8daf,
0x06552ace8f9d3ad1,
0xdc03edc6dd6532b2,
0x0391b0a66d5051f9,
]),
},
];
#[cfg(test)]
mod test {
use super::*;
crate::field_testing_suite!(Fp6, "field_arithmetic");
// extension field-specific
crate::field_testing_suite!(Fp6, "cubic_sparse_mul", Fp2);
crate::field_testing_suite!(
Fp6,
"frobenius",
// Frobenius endomorphism power parameter for extension field
// ϕ: E → E
// (x, y) ↦ (x^p, y^p)
// p: modulus of base field (Here, Fp::MODULUS)
[
0x9ffffcd300000001,
0xa2a7e8c30006b945,
0xe4a7a5fe8fadffd6,
0x443f9a5cda8a6c7b,
0xa803ca76f439266f,
0x0130e0000d7f70e4,
0x2400000000002400,
]
);
#[test]
fn test_fq2_mul_nonresidue() {
let nqr = Fp6 {
c0: Fp2::ZERO,
c1: Fp2::ONE,
c2: Fp2::ZERO,
};
let e = Fp6::random(rand_core::OsRng);
let a0 = e.mul_by_nonresidue();
let a1 = e * nqr;
assert_eq!(a0, a1);
}
}