1use ff::Field;
2
3use super::{fp::Fp, fp2::Fp2};
4use crate::ff_ext::{
5 cubic::{CubicExtField, CubicExtFieldArith, CubicSparseMul},
6 ExtField,
7};
8
9crate::impl_binops_additive!(Fp6, Fp6);
13crate::impl_binops_multiplicative!(Fp6, Fp6);
14crate::impl_binops_calls!(Fp6);
15crate::impl_sum_prod!(Fp6);
16pub type Fp6 = CubicExtField<Fp2>;
17
18impl CubicExtFieldArith for Fp6 {
19 type Base = Fp2;
20}
21
22impl CubicSparseMul for Fp6 {
23 type Base = Fp2;
24}
25
26impl ExtField for Fp6 {
27 const NON_RESIDUE: Self = Fp6::new(Fp2::ZERO, Fp2::ONE, Fp2::ZERO);
28
29 fn frobenius_map(&mut self, power: usize) {
30 self.c0.frobenius_map(power);
31 self.c1.frobenius_map(power);
32 self.c2.frobenius_map(power);
33 self.c1.mul_assign(&FROBENIUS_COEFF_FP6_C1[power % 6]);
34 self.c2.mul_assign(&FROBENIUS_COEFF_FP6_C2[power % 6]);
35 }
36
37 fn mul_by_nonresidue(self: &Fp6) -> Fp6 {
38 let c0 = self.c2.mul_by_nonresidue();
39 let c1 = self.c0;
40 let c2 = self.c1;
41 Self { c0, c1, c2 }
42 }
43}
44
45pub(crate) const FROBENIUS_COEFF_FP6_C1: [Fp2; 6] = [
48 Fp2::ONE,
50 Fp2 {
52 c0: Fp::from_raw([
54 0xa001825382850d03,
55 0x52e787634eccc335,
56 0x041bc4bb14cc42dc,
57 0x6f93678bc921dcd5,
58 0xe3886170077a5098,
59 0x3bc0d351f4c70da1,
60 0x120de97f024c55bc,
61 ]),
62 c1: Fp::from_raw([
64 0x2772fea378a9b322,
65 0x13be1b7cd3c9ea0e,
66 0x5efa1ddf46580804,
67 0xa1a7f5502b709196,
68 0x132461908eadbe3d,
69 0xd82becc2ef081b76,
70 0x2096f3f804d973af,
71 ]),
72 },
73 Fp2 {
75 c0: Fp::from_raw([
77 0x100004c37ffffffe,
78 0xc8ad8b38dffaf50c,
79 0xc956d01c903d720d,
80 0x50000d7ee0e4a803,
81 0x00000000360001c9,
82 0x0000000000004800,
83 0x0000000000000000,
84 ]),
85 c1: Fp::ZERO,
86 },
87 Fp2 {
89 c0: Fp::from_raw([
91 0xa04518fa783eb497,
92 0x8b43b17b4c3ea938,
93 0x7cd52ae30d09b78a,
94 0x2913e38315a71c28,
95 0x833b798e78bd98c0,
96 0x2511749de232911d,
97 0x1f9cd069c59f50a7,
98 ]),
99 c1: Fp::from_raw([
101 0x77240d4066e42ac5,
102 0x4a728fcb77b150ee,
103 0xe8faacb3479a973a,
104 0xc0aa2122aa7cb689,
105 0x3f4af36699fe6d74,
106 0xc26943f93dc9eab6,
107 0x23affd628747cbae,
108 ]),
109 },
110 Fp2 {
112 c0: Fp::from_raw([
114 0x8ffff80f80000002,
115 0xd9fa5d8a200bc439,
116 0x1b50d5e1ff708dc8,
117 0xf43f8cddf9a5c478,
118 0xa803ca76be3924a5,
119 0x0130e0000d7f28e4,
120 0x2400000000002400,
121 ]),
122 c1: Fp::ZERO,
123 },
124 Fp2 {
126 c0: Fp::from_raw([
128 0xffb95e58053c3e68,
129 0x672498a76502061c,
130 0x485e5c5efd860546,
131 0xefd7e9aad64bdffa,
132 0xe943b9ef683a6385,
133 0xa18f781044054309,
134 0x165546173814a19c,
135 ]),
136 c1: Fp::from_raw([
138 0xa168edc22072221b,
139 0xe71f263db492378e,
140 0x815a816a9169606e,
141 0x262d1e46df2790d7,
142 0xfd983ff6bfc6212c,
143 0x67cc8f43ee2cdb9c,
144 0x03b90ea573df08a1,
145 ]),
146 },
147];
148
149pub(crate) const FROBENIUS_COEFF_FP6_C2: [Fp2; 6] = [
152 Fp2::ONE,
154 Fp2 {
156 c0: Fp::from_raw([
158 0xb0a818e422737f7c,
159 0xd0ec132a7b38f09d,
160 0xc00e17ffb4a61950,
161 0x8c9549048e7b424c,
162 0xdc590efb038c8299,
163 0xc34610bac6bd22c4,
164 0x093733692ce3cdcf,
165 ]),
166 c1: Fp::from_raw([
168 0x240ce398421dc7dc,
169 0x61c90b4940d9031c,
170 0xcdac3209d9df5460,
171 0x6f61d0bd35f39ebe,
172 0x26f29bd46039e303,
173 0xba3593aa6f3e6bf4,
174 0x12cb19daadc92882,
175 ]),
176 },
177 Fp2 {
179 c0: Fp::from_raw([
181 0x8ffff80f80000002,
182 0xd9fa5d8a200bc439,
183 0x1b50d5e1ff708dc8,
184 0xf43f8cddf9a5c478,
185 0xa803ca76be3924a5,
186 0x0130e0000d7f28e4,
187 0x2400000000002400,
188 ]),
189 c1: Fp::ZERO,
190 },
191 Fp2 {
193 c0: Fp::from_raw([
195 0x6885980d6c8d2186,
196 0x8f57e1c7a87f7555,
197 0x9aa5ace8b26b78d8,
198 0x1657aaf1e85b8229,
199 0xb2ce0cbc85b8561e,
200 0x5f7dd2f9f1405312,
201 0x085cc83a7eeba2ef,
202 ]),
203 c1: Fp::from_raw([
205 0x2bca2a953ab51c9b,
206 0x0bbe8a0dd9ea1d31,
207 0x58d5ebe487e52368,
208 0xee0ea8b684b9400d,
209 0x7abc03d404620899,
210 0x6af75e8ec0dbd23e,
211 0x0da3357ee4e6a983,
212 ]),
213 },
214 Fp2 {
216 c0: Fp::from_raw([
218 0x100004c37ffffffe,
219 0xc8ad8b38dffaf50c,
220 0xc956d01c903d720d,
221 0x50000d7ee0e4a803,
222 0x00000000360001c9,
223 0x0000000000004800,
224 0x0000000000000000,
225 ]),
226 c1: Fp::ZERO,
227 },
228 Fp2 {
230 c0: Fp::from_raw([
232 0x86d24be170ff5eff,
233 0x4263f3d0dc4e5352,
234 0x89f3e116289c6dad,
235 0xa152a66663b3a805,
236 0x18dcaebf6af44db7,
237 0xde6cfc4b5581fb0d,
238 0x126c045c5430b340,
239 ]),
240 c1: Fp::from_raw([
242 0x5028eea5832d1b8a,
243 0x3520536be54398f8,
244 0xbe2588102de9880e,
245 0xe6cf20e91fdd8daf,
246 0x06552ace8f9d3ad1,
247 0xdc03edc6dd6532b2,
248 0x0391b0a66d5051f9,
249 ]),
250 },
251];
252
253#[cfg(test)]
254mod test {
255 use rand_core::RngCore;
256
257 use super::*;
258 use crate::{arith_test, frobenius_test, setup_f6_test_funcs, test};
259
260 macro_rules! test_fp6 {
261 ($test:ident, $size: expr) => {
262 paste::paste! {
263 #[test]
264 fn [< $test test >]() {
265 use rand::SeedableRng;
266 use rand_xorshift::XorShiftRng;
267 let mut rng = XorShiftRng::from_seed(crate::tests::SEED);
268 crate::pluto_eris::fp6::test::$test(&mut rng, $size);
269 }
270 }
271 };
272 }
273
274 arith_test!(Fp6);
275 setup_f6_test_funcs!(Fp6, Fp2);
276 test_fp6!(f6_mul_nonresidue_, 1000);
277 test_fp6!(f6_mul_by_1_, 1000);
278 test_fp6!(f6_mul_by_01_, 1000);
279 frobenius_test!(Fp6, Fp, 10);
280
281 #[test]
282 fn test_fp6_mul_nonresidue() {
283 let e = Fp6::random(rand_core::OsRng);
284 let a0 = e.mul_by_nonresidue();
285 let a1 = e * Fp6::NON_RESIDUE;
286
287 assert_eq!(a0, a1);
288 }
289}