openvm_pairing_guest/pairing/
mod.rs

1mod final_exp;
2mod line;
3mod miller_loop;
4mod miller_step;
5mod operations;
6mod sextic_ext_field;
7
8pub use final_exp::*;
9pub use line::*;
10pub use miller_loop::*;
11pub use miller_step::*;
12use openvm_algebra_guest::{
13    field::{ComplexConjugate, FieldExtension},
14    ExpBytes, Field, IntMod,
15};
16use openvm_ecc_guest::AffinePoint;
17#[allow(unused_imports)]
18pub(crate) use operations::*;
19pub use sextic_ext_field::*;
20
21use crate::PairingBaseFunct7;
22
23pub trait PairingIntrinsics {
24    type Fp: Field + IntMod;
25    type Fp2: Field + FieldExtension<Self::Fp> + ComplexConjugate;
26    type Fp12: FieldExtension<Self::Fp2> + ComplexConjugate;
27
28    /// Index for custom intrinsic opcode determination.
29    const PAIRING_IDX: usize;
30    /// The sextic extension `Fp12` is `Fp2[X] / (X^6 - \xi)`, where `\xi` is a non-residue.
31    const XI: Self::Fp2;
32    /// Multiplication constants for the Frobenius map for coefficients in Fp2 c1..=c5 for powers 0..12
33    /// FROBENIUS_COEFFS\[i\]\[j\] = \xi^{(j + 1) * (p^i - 1)/6} when p = 1 (mod 6)
34    const FROBENIUS_COEFFS: [[Self::Fp2; 5]; 12];
35
36    const FP2_TWO: Self::Fp2;
37    const FP2_THREE: Self::Fp2;
38}
39
40#[allow(non_snake_case)]
41pub trait PairingCheck {
42    type Fp: Field;
43    type Fp2: Field + FieldExtension<Self::Fp> + ComplexConjugate;
44    type Fp12: FieldExtension<Self::Fp2> + ComplexConjugate;
45
46    /// Given points P[], Q[], computes the multi-Miller loop and then returns
47    /// the final exponentiation hint from Novakovic-Eagon <https://eprint.iacr.org/2024/640.pdf>.
48    ///
49    /// Output is c (residue witness inverse) and u (cubic nonresidue power).
50    fn pairing_check_hint(
51        P: &[AffinePoint<Self::Fp>],
52        Q: &[AffinePoint<Self::Fp2>],
53    ) -> (Self::Fp12, Self::Fp12);
54
55    fn pairing_check(
56        P: &[AffinePoint<Self::Fp>],
57        Q: &[AffinePoint<Self::Fp2>],
58    ) -> Result<(), PairingCheckError>;
59}
60
61// Square and multiply implementation of final exponentiation. Used if the hint fails to prove
62// the pairing check.
63// `exp` should be big-endian.
64pub fn exp_check_fallback<F: Field + ExpBytes>(f: &F, exp: &[u8]) -> Result<(), PairingCheckError>
65where
66    for<'a> &'a F: core::ops::Mul<&'a F, Output = F>,
67{
68    if f.exp_bytes(true, exp) == F::ONE {
69        Ok(())
70    } else {
71        Err(PairingCheckError)
72    }
73}
74
75pub const fn shifted_funct7<P: PairingIntrinsics>(funct7: PairingBaseFunct7) -> usize {
76    P::PAIRING_IDX * (PairingBaseFunct7::PAIRING_MAX_KINDS as usize) + funct7 as usize
77}
78
79#[derive(Debug, Clone, PartialEq)]
80pub struct PairingCheckError;
81
82impl core::error::Error for PairingCheckError {}
83impl core::fmt::Display for PairingCheckError {
84    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
85        write!(f, "Pairing check failed")
86    }
87}
88
89#[cfg(all(test, not(target_os = "zkvm")))]
90mod tests {
91    use num_bigint::BigUint;
92    use openvm_algebra_moduli_macros::{moduli_declare, moduli_init};
93
94    use super::*;
95
96    moduli_declare! {
97        F13 { modulus = "13" },
98    }
99
100    moduli_init! {
101        "13",
102    }
103
104    impl Field for F13 {
105        type SelfRef<'a> = &'a Self;
106        const ZERO: Self = <Self as IntMod>::ZERO;
107        const ONE: Self = <Self as IntMod>::ONE;
108
109        fn double_assign(&mut self) {
110            IntMod::double_assign(self);
111        }
112
113        fn square_assign(&mut self) {
114            IntMod::square_assign(self);
115        }
116    }
117
118    #[test]
119    fn test_pairing_check_fallback() {
120        let a = F13::from_u8(2);
121        let b = BigUint::from(12u32);
122        let result = exp_check_fallback(&a, &b.to_bytes_be());
123        assert_eq!(result, Ok(()));
124
125        let b = BigUint::from(11u32);
126        let result = exp_check_fallback(&a, &b.to_bytes_be());
127        assert_eq!(result, Err(PairingCheckError));
128    }
129}