secp256k1/
schnorr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
// SPDX-License-Identifier: CC0-1.0

//! Support for schnorr signatures.
//!

use core::{fmt, ptr, str};

#[cfg(feature = "rand")]
use rand::{CryptoRng, Rng};

use crate::ffi::{self, CPtr};
use crate::key::{Keypair, XOnlyPublicKey};
#[cfg(feature = "global-context")]
use crate::SECP256K1;
use crate::{constants, from_hex, Error, Message, Secp256k1, Signing, Verification};

/// Represents a schnorr signature.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Signature([u8; constants::SCHNORR_SIGNATURE_SIZE]);
impl_array_newtype!(Signature, u8, constants::SCHNORR_SIGNATURE_SIZE);
impl_pretty_debug!(Signature);

#[cfg(feature = "serde")]
impl serde::Serialize for Signature {
    fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
        if s.is_human_readable() {
            s.collect_str(self)
        } else {
            s.serialize_bytes(&self[..])
        }
    }
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for Signature {
    fn deserialize<D: serde::Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
        if d.is_human_readable() {
            d.deserialize_str(super::serde_util::FromStrVisitor::new(
                "a hex string representing 64 byte schnorr signature",
            ))
        } else {
            d.deserialize_bytes(super::serde_util::BytesVisitor::new(
                "raw 64 bytes schnorr signature",
                Signature::from_slice,
            ))
        }
    }
}

impl fmt::LowerHex for Signature {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for ch in &self.0[..] {
            write!(f, "{:02x}", ch)?;
        }
        Ok(())
    }
}

impl fmt::Display for Signature {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(self, f) }
}

impl str::FromStr for Signature {
    type Err = Error;
    fn from_str(s: &str) -> Result<Signature, Error> {
        let mut res = [0u8; constants::SCHNORR_SIGNATURE_SIZE];
        match from_hex(s, &mut res) {
            Ok(constants::SCHNORR_SIGNATURE_SIZE) =>
                Signature::from_slice(&res[0..constants::SCHNORR_SIGNATURE_SIZE]),
            _ => Err(Error::InvalidSignature),
        }
    }
}

impl Signature {
    /// Creates a `Signature` directly from a slice.
    #[inline]
    pub fn from_slice(data: &[u8]) -> Result<Signature, Error> {
        match data.len() {
            constants::SCHNORR_SIGNATURE_SIZE => {
                let mut ret = [0u8; constants::SCHNORR_SIGNATURE_SIZE];
                ret[..].copy_from_slice(data);
                Ok(Signature(ret))
            }
            _ => Err(Error::InvalidSignature),
        }
    }

    /// Returns a signature as a byte array.
    #[inline]
    pub fn serialize(&self) -> [u8; constants::SCHNORR_SIGNATURE_SIZE] { self.0 }

    /// Verifies a schnorr signature for `msg` using `pk` and the global [`SECP256K1`] context.
    #[inline]
    #[cfg(feature = "global-context")]
    pub fn verify(&self, msg: &Message, pk: &XOnlyPublicKey) -> Result<(), Error> {
        SECP256K1.verify_schnorr(self, msg, pk)
    }
}

impl<C: Signing> Secp256k1<C> {
    fn sign_schnorr_helper(
        &self,
        msg: &Message,
        keypair: &Keypair,
        nonce_data: *const ffi::types::c_uchar,
    ) -> Signature {
        unsafe {
            let mut sig = [0u8; constants::SCHNORR_SIGNATURE_SIZE];
            assert_eq!(
                1,
                ffi::secp256k1_schnorrsig_sign(
                    self.ctx.as_ptr(),
                    sig.as_mut_c_ptr(),
                    msg.as_c_ptr(),
                    keypair.as_c_ptr(),
                    nonce_data,
                )
            );

            Signature(sig)
        }
    }

    /// Creates a schnorr signature internally using the [`rand::rngs::ThreadRng`] random number
    /// generator to generate the auxiliary random data.
    #[cfg(feature = "rand-std")]
    pub fn sign_schnorr(&self, msg: &Message, keypair: &Keypair) -> Signature {
        self.sign_schnorr_with_rng(msg, keypair, &mut rand::thread_rng())
    }

    /// Creates a schnorr signature without using any auxiliary random data.
    pub fn sign_schnorr_no_aux_rand(&self, msg: &Message, keypair: &Keypair) -> Signature {
        self.sign_schnorr_helper(msg, keypair, ptr::null())
    }

    /// Creates a schnorr signature using the given auxiliary random data.
    pub fn sign_schnorr_with_aux_rand(
        &self,
        msg: &Message,
        keypair: &Keypair,
        aux_rand: &[u8; 32],
    ) -> Signature {
        self.sign_schnorr_helper(msg, keypair, aux_rand.as_c_ptr() as *const ffi::types::c_uchar)
    }

    /// Creates a schnorr signature using the given random number generator to
    /// generate the auxiliary random data.
    #[cfg(feature = "rand")]
    pub fn sign_schnorr_with_rng<R: Rng + CryptoRng>(
        &self,
        msg: &Message,
        keypair: &Keypair,
        rng: &mut R,
    ) -> Signature {
        let mut aux = [0u8; 32];
        rng.fill_bytes(&mut aux);
        self.sign_schnorr_helper(msg, keypair, aux.as_c_ptr() as *const ffi::types::c_uchar)
    }
}

impl<C: Verification> Secp256k1<C> {
    /// Verifies a schnorr signature.
    pub fn verify_schnorr(
        &self,
        sig: &Signature,
        msg: &Message,
        pubkey: &XOnlyPublicKey,
    ) -> Result<(), Error> {
        unsafe {
            let ret = ffi::secp256k1_schnorrsig_verify(
                self.ctx.as_ptr(),
                sig.as_c_ptr(),
                msg.as_c_ptr(),
                32,
                pubkey.as_c_ptr(),
            );

            if ret == 1 {
                Ok(())
            } else {
                Err(Error::IncorrectSignature)
            }
        }
    }
}

#[cfg(test)]
#[allow(unused_imports)]
mod tests {
    use core::str::FromStr;

    #[cfg(feature = "rand-std")]
    use rand::rngs::ThreadRng;
    #[cfg(target_arch = "wasm32")]
    use wasm_bindgen_test::wasm_bindgen_test as test;

    use super::*;
    use crate::schnorr::{Keypair, Signature, XOnlyPublicKey};
    use crate::Error::InvalidPublicKey;
    use crate::{constants, from_hex, Message, Secp256k1, SecretKey};

    #[cfg(all(not(secp256k1_fuzz), feature = "alloc"))]
    macro_rules! hex_32 {
        ($hex:expr) => {{
            let mut result = [0u8; 32];
            from_hex($hex, &mut result).expect("valid hex string");
            result
        }};
    }

    #[test]
    #[cfg(feature = "rand-std")]
    fn schnorr_sign_with_aux_rand_verify() {
        sign_helper(|secp, msg, seckey, rng| {
            let aux_rand = crate::random_32_bytes(rng);
            secp.sign_schnorr_with_aux_rand(msg, seckey, &aux_rand)
        })
    }

    #[test]
    #[cfg(feature = "rand-std")]
    fn schnor_sign_with_rng_verify() {
        sign_helper(|secp, msg, seckey, rng| secp.sign_schnorr_with_rng(msg, seckey, rng))
    }

    #[test]
    #[cfg(feature = "rand-std")]
    fn schnorr_sign_verify() { sign_helper(|secp, msg, seckey, _| secp.sign_schnorr(msg, seckey)) }

    #[test]
    #[cfg(feature = "rand-std")]
    fn schnorr_sign_no_aux_rand_verify() {
        sign_helper(|secp, msg, seckey, _| secp.sign_schnorr_no_aux_rand(msg, seckey))
    }

    #[cfg(feature = "rand-std")]
    fn sign_helper(
        sign: fn(&Secp256k1<crate::All>, &Message, &Keypair, &mut ThreadRng) -> Signature,
    ) {
        let secp = Secp256k1::new();

        let mut rng = rand::thread_rng();
        let kp = Keypair::new(&secp, &mut rng);
        let (pk, _parity) = kp.x_only_public_key();

        for _ in 0..100 {
            let msg = crate::random_32_bytes(&mut rand::thread_rng());
            let msg = Message::from_digest_slice(&msg).unwrap();

            let sig = sign(&secp, &msg, &kp, &mut rng);

            assert!(secp.verify_schnorr(&sig, &msg, &pk).is_ok());
        }
    }

    #[test]
    #[cfg(feature = "alloc")]
    #[cfg(not(secp256k1_fuzz))] // fixed sig vectors can't work with fuzz-sigs
    fn schnorr_sign() {
        let secp = Secp256k1::new();

        let hex_msg = hex_32!("E48441762FB75010B2AA31A512B62B4148AA3FB08EB0765D76B252559064A614");
        let msg = Message::from_digest_slice(&hex_msg).unwrap();
        let sk = Keypair::from_seckey_str(
            &secp,
            "688C77BC2D5AAFF5491CF309D4753B732135470D05B7B2CD21ADD0744FE97BEF",
        )
        .unwrap();
        let aux_rand: [u8; 32] =
            hex_32!("02CCE08E913F22A36C5648D6405A2C7C50106E7AA2F1649E381C7F09D16B80AB");
        let expected_sig = Signature::from_str("6470FD1303DDA4FDA717B9837153C24A6EAB377183FC438F939E0ED2B620E9EE5077C4A8B8DCA28963D772A94F5F0DDF598E1C47C137F91933274C7C3EDADCE8").unwrap();

        let sig = secp.sign_schnorr_with_aux_rand(&msg, &sk, &aux_rand);

        assert_eq!(expected_sig, sig);
    }

    #[test]
    #[cfg(not(secp256k1_fuzz))] // fixed sig vectors can't work with fuzz-sigs
    #[cfg(feature = "alloc")]
    fn schnorr_verify() {
        let secp = Secp256k1::new();

        let hex_msg = hex_32!("E48441762FB75010B2AA31A512B62B4148AA3FB08EB0765D76B252559064A614");
        let msg = Message::from_digest_slice(&hex_msg).unwrap();
        let sig = Signature::from_str("6470FD1303DDA4FDA717B9837153C24A6EAB377183FC438F939E0ED2B620E9EE5077C4A8B8DCA28963D772A94F5F0DDF598E1C47C137F91933274C7C3EDADCE8").unwrap();
        let pubkey = XOnlyPublicKey::from_str(
            "B33CC9EDC096D0A83416964BD3C6247B8FECD256E4EFA7870D2C854BDEB33390",
        )
        .unwrap();

        assert!(secp.verify_schnorr(&sig, &msg, &pubkey).is_ok());
    }

    #[test]
    fn test_serialize() {
        let sig = Signature::from_str("6470FD1303DDA4FDA717B9837153C24A6EAB377183FC438F939E0ED2B620E9EE5077C4A8B8DCA28963D772A94F5F0DDF598E1C47C137F91933274C7C3EDADCE8").unwrap();
        let sig_bytes = sig.serialize();
        let bytes = [
            100, 112, 253, 19, 3, 221, 164, 253, 167, 23, 185, 131, 113, 83, 194, 74, 110, 171, 55,
            113, 131, 252, 67, 143, 147, 158, 14, 210, 182, 32, 233, 238, 80, 119, 196, 168, 184,
            220, 162, 137, 99, 215, 114, 169, 79, 95, 13, 223, 89, 142, 28, 71, 193, 55, 249, 25,
            51, 39, 76, 124, 62, 218, 220, 232,
        ];
        assert_eq!(sig_bytes, bytes);
    }

    #[test]
    fn test_pubkey_from_slice() {
        assert_eq!(XOnlyPublicKey::from_slice(&[]), Err(InvalidPublicKey));
        assert_eq!(XOnlyPublicKey::from_slice(&[1, 2, 3]), Err(InvalidPublicKey));
        let pk = XOnlyPublicKey::from_slice(&[
            0xB3, 0x3C, 0xC9, 0xED, 0xC0, 0x96, 0xD0, 0xA8, 0x34, 0x16, 0x96, 0x4B, 0xD3, 0xC6,
            0x24, 0x7B, 0x8F, 0xEC, 0xD2, 0x56, 0xE4, 0xEF, 0xA7, 0x87, 0x0D, 0x2C, 0x85, 0x4B,
            0xDE, 0xB3, 0x33, 0x90,
        ]);
        assert!(pk.is_ok());
    }

    #[test]
    #[cfg(feature = "rand-std")]
    fn test_pubkey_serialize_roundtrip() {
        let secp = Secp256k1::new();
        let kp = Keypair::new(&secp, &mut rand::thread_rng());
        let (pk, _parity) = kp.x_only_public_key();

        let ser = pk.serialize();
        let pubkey2 = XOnlyPublicKey::from_slice(&ser).unwrap();
        assert_eq!(pk, pubkey2);
    }

    #[test]
    #[cfg(feature = "alloc")]
    fn test_xonly_key_extraction() {
        let secp = Secp256k1::new();
        let sk_str = "688C77BC2D5AAFF5491CF309D4753B732135470D05B7B2CD21ADD0744FE97BEF";
        let keypair = Keypair::from_seckey_str(&secp, sk_str).unwrap();
        let sk = SecretKey::from_keypair(&keypair);
        assert_eq!(SecretKey::from_str(sk_str).unwrap(), sk);
        let pk = crate::key::PublicKey::from_keypair(&keypair);
        assert_eq!(crate::key::PublicKey::from_secret_key(&secp, &sk), pk);
        let (xpk, _parity) = keypair.x_only_public_key();
        assert_eq!(XOnlyPublicKey::from(pk), xpk);
    }

    #[test]
    fn test_pubkey_from_bad_slice() {
        // Bad sizes
        assert_eq!(
            XOnlyPublicKey::from_slice(&[0; constants::SCHNORR_PUBLIC_KEY_SIZE - 1]),
            Err(InvalidPublicKey)
        );
        assert_eq!(
            XOnlyPublicKey::from_slice(&[0; constants::SCHNORR_PUBLIC_KEY_SIZE + 1]),
            Err(InvalidPublicKey)
        );

        // Bad parse
        assert_eq!(
            XOnlyPublicKey::from_slice(&[0xff; constants::SCHNORR_PUBLIC_KEY_SIZE]),
            Err(InvalidPublicKey)
        );
        // In fuzzing mode restrictions on public key validity are much more
        // relaxed, thus the invalid check below is expected to fail.
        #[cfg(not(secp256k1_fuzz))]
        assert_eq!(
            XOnlyPublicKey::from_slice(&[0x55; constants::SCHNORR_PUBLIC_KEY_SIZE]),
            Err(InvalidPublicKey)
        );
        assert_eq!(XOnlyPublicKey::from_slice(&[]), Err(InvalidPublicKey));
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_pubkey_display_output() {
        #[cfg(not(secp256k1_fuzz))]
        let pk = {
            let secp = Secp256k1::new();
            static SK_BYTES: [u8; 32] = [
                0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
                0x06, 0x07, 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0x63, 0x63, 0x63, 0x63,
                0x63, 0x63, 0x63, 0x63,
            ];

            let kp = Keypair::from_seckey_slice(&secp, &SK_BYTES).expect("sk");

            // In fuzzing mode secret->public key derivation is different, so
            // hard-code the expected result.
            let (pk, _parity) = kp.x_only_public_key();
            pk
        };
        #[cfg(secp256k1_fuzz)]
        let pk = XOnlyPublicKey::from_slice(&[
            0x18, 0x84, 0x57, 0x81, 0xf6, 0x31, 0xc4, 0x8f, 0x1c, 0x97, 0x09, 0xe2, 0x30, 0x92,
            0x06, 0x7d, 0x06, 0x83, 0x7f, 0x30, 0xaa, 0x0c, 0xd0, 0x54, 0x4a, 0xc8, 0x87, 0xfe,
            0x91, 0xdd, 0xd1, 0x66,
        ])
        .expect("pk");

        assert_eq!(
            pk.to_string(),
            "18845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166"
        );
        assert_eq!(
            XOnlyPublicKey::from_str(
                "18845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166"
            )
            .unwrap(),
            pk
        );

        assert!(XOnlyPublicKey::from_str(
            "00000000000000000000000000000000000000000000000000000000000000000"
        )
        .is_err());
        assert!(XOnlyPublicKey::from_str(
            "18845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd16601"
        )
        .is_err());
        assert!(XOnlyPublicKey::from_str(
            "18845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd16"
        )
        .is_err());
        assert!(XOnlyPublicKey::from_str(
            "18845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd1"
        )
        .is_err());
        assert!(XOnlyPublicKey::from_str(
            "xx18845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd1"
        )
        .is_err());

        let long_str: String = "a".repeat(1024 * 1024);
        assert!(XOnlyPublicKey::from_str(&long_str).is_err());
    }

    #[test]
    // In fuzzing mode secret->public key derivation is different, so
    // this test will never correctly derive the static pubkey.
    #[cfg(not(secp256k1_fuzz))]
    #[cfg(all(feature = "rand", feature = "alloc"))]
    fn test_pubkey_serialize() {
        use rand::rngs::mock::StepRng;
        let secp = Secp256k1::new();
        let kp = Keypair::new(&secp, &mut StepRng::new(1, 1));
        let (pk, _parity) = kp.x_only_public_key();
        assert_eq!(
            &pk.serialize()[..],
            &[
                124, 121, 49, 14, 253, 63, 197, 50, 39, 194, 107, 17, 193, 219, 108, 154, 126, 9,
                181, 248, 2, 12, 149, 233, 198, 71, 149, 134, 250, 184, 154, 229
            ][..]
        );
    }

    #[cfg(not(secp256k1_fuzz))] // fixed sig vectors can't work with fuzz-sigs
    #[test]
    #[cfg(all(feature = "serde", feature = "alloc"))]
    fn test_serde() {
        use serde_test::{assert_tokens, Configure, Token};

        let s = Secp256k1::new();

        let msg = Message::from_digest_slice(&[1; 32]).unwrap();
        let keypair = Keypair::from_seckey_slice(&s, &[2; 32]).unwrap();
        let aux = [3u8; 32];
        let sig = s.sign_schnorr_with_aux_rand(&msg, &keypair, &aux);
        static SIG_BYTES: [u8; constants::SCHNORR_SIGNATURE_SIZE] = [
            0x14, 0xd0, 0xbf, 0x1a, 0x89, 0x53, 0x50, 0x6f, 0xb4, 0x60, 0xf5, 0x8b, 0xe1, 0x41,
            0xaf, 0x76, 0x7f, 0xd1, 0x12, 0x53, 0x5f, 0xb3, 0x92, 0x2e, 0xf2, 0x17, 0x30, 0x8e,
            0x2c, 0x26, 0x70, 0x6f, 0x1e, 0xeb, 0x43, 0x2b, 0x3d, 0xba, 0x9a, 0x01, 0x08, 0x2f,
            0x9e, 0x4d, 0x4e, 0xf5, 0x67, 0x8a, 0xd0, 0xd9, 0xd5, 0x32, 0xc0, 0xdf, 0xa9, 0x07,
            0xb5, 0x68, 0x72, 0x2d, 0x0b, 0x01, 0x19, 0xba,
        ];
        static SIG_STR: &str = "\
            14d0bf1a8953506fb460f58be141af767fd112535fb3922ef217308e2c26706f1eeb432b3dba9a01082f9e4d4ef5678ad0d9d532c0dfa907b568722d0b0119ba\
        ";

        static PK_BYTES: [u8; 32] = [
            24, 132, 87, 129, 246, 49, 196, 143, 28, 151, 9, 226, 48, 146, 6, 125, 6, 131, 127, 48,
            170, 12, 208, 84, 74, 200, 135, 254, 145, 221, 209, 102,
        ];
        static PK_STR: &str = "18845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166";
        let pk = XOnlyPublicKey::from_slice(&PK_BYTES).unwrap();

        assert_tokens(&sig.compact(), &[Token::BorrowedBytes(&SIG_BYTES[..])]);
        assert_tokens(&sig.compact(), &[Token::Bytes(&SIG_BYTES[..])]);
        assert_tokens(&sig.compact(), &[Token::ByteBuf(&SIG_BYTES[..])]);

        assert_tokens(&sig.readable(), &[Token::BorrowedStr(SIG_STR)]);
        assert_tokens(&sig.readable(), &[Token::Str(SIG_STR)]);
        assert_tokens(&sig.readable(), &[Token::String(SIG_STR)]);

        #[rustfmt::skip]
        assert_tokens(&pk.compact(), &[
            Token::Tuple{ len: 32 },
            Token::U8(24), Token::U8(132), Token::U8(87), Token::U8(129), Token::U8(246), Token::U8(49), Token::U8(196), Token::U8(143),
            Token::U8(28), Token::U8(151), Token::U8(9), Token::U8(226), Token::U8(48), Token::U8(146), Token::U8(6), Token::U8(125),
            Token::U8(6), Token::U8(131), Token::U8(127), Token::U8(48), Token::U8(170), Token::U8(12), Token::U8(208), Token::U8(84),
            Token::U8(74), Token::U8(200), Token::U8(135), Token::U8(254), Token::U8(145), Token::U8(221), Token::U8(209), Token::U8(102),
            Token::TupleEnd
        ]);

        assert_tokens(&pk.readable(), &[Token::BorrowedStr(PK_STR)]);
        assert_tokens(&pk.readable(), &[Token::Str(PK_STR)]);
        assert_tokens(&pk.readable(), &[Token::String(PK_STR)]);
    }
}