pasta_curves/
hashtocurve.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
//! This module implements "simplified SWU" hashing to short Weierstrass curves
//! with a = 0.

use ff::{Field, FromUniformBytes, PrimeField};
use static_assertions::const_assert;
use subtle::ConstantTimeEq;

use crate::arithmetic::CurveExt;

/// Hashes over a message and writes the output to all of `buf`.
pub fn hash_to_field<F: FromUniformBytes<64>>(
    curve_id: &str,
    domain_prefix: &str,
    message: &[u8],
    buf: &mut [F; 2],
) {
    assert!(domain_prefix.len() < 256);
    assert!((22 + curve_id.len() + domain_prefix.len()) < 256);

    // Assume that the field size is 32 bytes and k is 256, where k is defined in
    // <https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-10.html#name-security-considerations-3>.
    const CHUNKLEN: usize = 64;
    const_assert!(CHUNKLEN * 2 < 256);

    // Input block size of BLAKE2b.
    const R_IN_BYTES: usize = 128;

    let personal = [0u8; 16];
    let empty_hasher = blake2b_simd::Params::new()
        .hash_length(CHUNKLEN)
        .personal(&personal)
        .to_state();

    let b_0 = empty_hasher
        .clone()
        .update(&[0; R_IN_BYTES])
        .update(message)
        .update(&[0, (CHUNKLEN * 2) as u8, 0])
        .update(domain_prefix.as_bytes())
        .update(b"-")
        .update(curve_id.as_bytes())
        .update(b"_XMD:BLAKE2b_SSWU_RO_")
        .update(&[(22 + curve_id.len() + domain_prefix.len()) as u8])
        .finalize();

    let b_1 = empty_hasher
        .clone()
        .update(b_0.as_array())
        .update(&[1])
        .update(domain_prefix.as_bytes())
        .update(b"-")
        .update(curve_id.as_bytes())
        .update(b"_XMD:BLAKE2b_SSWU_RO_")
        .update(&[(22 + curve_id.len() + domain_prefix.len()) as u8])
        .finalize();

    let b_2 = {
        let mut empty_hasher = empty_hasher;
        for (l, r) in b_0.as_array().iter().zip(b_1.as_array().iter()) {
            empty_hasher.update(&[*l ^ *r]);
        }
        empty_hasher
            .update(&[2])
            .update(domain_prefix.as_bytes())
            .update(b"-")
            .update(curve_id.as_bytes())
            .update(b"_XMD:BLAKE2b_SSWU_RO_")
            .update(&[(22 + curve_id.len() + domain_prefix.len()) as u8])
            .finalize()
    };

    for (big, buf) in [b_1, b_2].iter().zip(buf.iter_mut()) {
        let mut little = [0u8; CHUNKLEN];
        little.copy_from_slice(big.as_array());
        little.reverse();
        *buf = F::from_uniform_bytes(&little);
    }
}

/// Implements a degree 3 isogeny map.
pub fn iso_map<F: Field, C: CurveExt<Base = F>, I: CurveExt<Base = F>>(
    p: &I,
    iso: &[C::Base; 13],
) -> C {
    // The input and output are in Jacobian coordinates, using the method
    // in "Avoiding inversions" [WB2019, section 4.3].

    let (x, y, z) = p.jacobian_coordinates();

    let z2 = z.square();
    let z3 = z2 * z;
    let z4 = z2.square();
    let z6 = z3.square();

    let num_x = ((iso[0] * x + iso[1] * z2) * x + iso[2] * z4) * x + iso[3] * z6;
    let div_x = (z2 * x + iso[4] * z4) * x + iso[5] * z6;

    let num_y = (((iso[6] * x + iso[7] * z2) * x + iso[8] * z4) * x + iso[9] * z6) * y;
    let div_y = (((x + iso[10] * z2) * x + iso[11] * z4) * x + iso[12] * z6) * z3;

    let zo = div_x * div_y;
    let xo = num_x * div_y * zo;
    let yo = num_y * div_x * zo.square();

    C::new_jacobian(xo, yo, zo).unwrap()
}

#[allow(clippy::many_single_char_names)]
pub fn map_to_curve_simple_swu<F: PrimeField, C: CurveExt<Base = F>, I: CurveExt<Base = F>>(
    u: &F,
    theta: F,
    z: F,
) -> I {
    // 1. tv1 = inv0(Z^2 * u^4 + Z * u^2)
    // 2. x1 = (-B / A) * (1 + tv1)
    // 3. If tv1 == 0, set x1 = B / (Z * A)
    // 4. gx1 = x1^3 + A * x1 + B
    //
    // We use the "Avoiding inversions" optimization in [WB2019, section 4.2]
    // (not to be confused with section 4.3):
    //
    //   here       [WB2019]
    //   -------    ---------------------------------
    //   Z          ξ
    //   u          t
    //   Z * u^2    ξ * t^2 (called u, confusingly)
    //   x1         X_0(t)
    //   x2         X_1(t)
    //   gx1        g(X_0(t))
    //   gx2        g(X_1(t))
    //
    // Using the "here" names:
    //    x1 = num_x1/div      = [B*(Z^2 * u^4 + Z * u^2 + 1)] / [-A*(Z^2 * u^4 + Z * u^2]
    //   gx1 = num_gx1/div_gx1 = [num_x1^3 + A * num_x1 * div^2 + B * div^3] / div^3

    let a = I::a();
    let b = I::b();
    let z_u2 = z * u.square();
    let ta = z_u2.square() + z_u2;
    let num_x1 = b * (ta + F::ONE);
    let div = a * F::conditional_select(&-ta, &z, ta.is_zero());
    let num2_x1 = num_x1.square();
    let div2 = div.square();
    let div3 = div2 * div;
    let num_gx1 = (num2_x1 + a * div2) * num_x1 + b * div3;

    // 5. x2 = Z * u^2 * x1
    let num_x2 = z_u2 * num_x1; // same div

    // 6. gx2 = x2^3 + A * x2 + B  [optimized out; see below]
    // 7. If is_square(gx1), set x = x1 and y = sqrt(gx1)
    // 8. Else set x = x2 and y = sqrt(gx2)
    let (gx1_square, y1) = F::sqrt_ratio(&num_gx1, &div3);

    // This magic also comes from a generalization of [WB2019, section 4.2].
    //
    // The Sarkar square root algorithm with input s gives us a square root of
    // h * s for free when s is not square, where h is a fixed nonsquare.
    // In our implementation, h = ROOT_OF_UNITY.
    // We know that Z / h is a square since both Z and h are
    // nonsquares. Precompute theta as a square root of Z / ROOT_OF_UNITY.
    //
    // We have gx2 = g(Z * u^2 * x1) = Z^3 * u^6 * gx1
    //                               = (Z * u^3)^2 * (Z/h * h * gx1)
    //                               = (Z * theta * u^3)^2 * (h * gx1)
    //
    // When gx1 is not square, y1 is a square root of h * gx1, and so Z * theta * u^3 * y1
    // is a square root of gx2. Note that we don't actually need to compute gx2.

    let y2 = theta * z_u2 * u * y1;
    let num_x = F::conditional_select(&num_x2, &num_x1, gx1_square);
    let y = F::conditional_select(&y2, &y1, gx1_square);

    // 9. If sgn0(u) != sgn0(y), set y = -y
    let y = F::conditional_select(&(-y), &y, u.is_odd().ct_eq(&y.is_odd()));

    I::new_jacobian(num_x * div, y * div3, div).unwrap()
}