radix_trie/trie_node.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
use crate::keys::*;
use crate::{SubTrie, SubTrieMut, BRANCH_FACTOR};
use std::borrow::Borrow;
use std::default::Default;
use nibble_vec::Nibblet;
#[derive(Debug, Clone)]
pub struct TrieNode<K, V> {
/// Key fragments/bits associated with this node, such that joining the keys from all
/// parent nodes and this node is equal to the bit-encoding of this node's key.
pub key: Nibblet,
/// The key and value stored at this node.
pub key_value: Option<Box<KeyValue<K, V>>>,
/// The number of children which are Some rather than None.
pub child_count: usize,
/// The children of this node stored such that the first nibble of each child key
/// dictates the child's bucket.
pub children: [Option<Box<TrieNode<K, V>>>; BRANCH_FACTOR],
}
#[derive(Debug, Clone)]
pub struct KeyValue<K, V> {
pub key: K,
pub value: V,
}
impl<K, V> TrieNode<K, V>
where
K: TrieKey,
{
/// Create a value-less, child-less TrieNode.
#[inline]
pub fn new() -> TrieNode<K, V> {
TrieNode {
key: Nibblet::new(),
key_value: None,
children: Default::default(),
child_count: 0,
}
}
/// Create a TrieNode with no children.
#[inline]
pub fn with_key_value(key_fragments: Nibblet, key: K, value: V) -> TrieNode<K, V> {
TrieNode {
key: key_fragments,
key_value: Some(Box::new(KeyValue {
key: key,
value: value,
})),
children: Default::default(),
child_count: 0,
}
}
/// Get the key stored at this node, if any.
#[inline]
pub fn key(&self) -> Option<&K> {
self.key_value.as_ref().map(|kv| &kv.key)
}
/// Get the value stored at this node, if any.
#[inline]
pub fn value(&self) -> Option<&V> {
self.key_value.as_ref().map(|kv| &kv.value)
}
/// Get a mutable reference to the value stored at this node, if any.
#[inline]
pub fn value_mut(&mut self) -> Option<&mut V> {
self.key_value.as_mut().map(|kv| &mut kv.value)
}
/// Get the value whilst checking a key match.
///
/// The key may be any borrowed form of the trie's key type, but TrieKey on the borrowed
/// form *must* match those for the key type.
#[inline]
pub fn value_checked<Q: ?Sized>(&self, key: &Q) -> Option<&V>
where
K: Borrow<Q>,
Q: TrieKey,
{
self.key_value.as_ref().map(|kv| {
check_keys(kv.key.borrow(), key);
&kv.value
})
}
/// Get a mutable value whilst checking a key match.
///
/// The key may be any borrowed form of the trie's key type, but TrieKey on the borrowed
/// form *must* match those for the key type.
#[inline]
pub fn value_checked_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
where
K: Borrow<Q>,
Q: TrieKey,
{
self.key_value.as_mut().map(|kv| {
check_keys(kv.key.borrow(), key);
&mut kv.value
})
}
/// Compute the number of keys and values in this node's subtrie.
#[inline]
pub fn compute_size(&self) -> usize {
let mut size = self.key_value.is_some() as usize;
for child in &self.children {
if let Some(ref child) = *child {
// TODO: could unroll this recursion
size += child.compute_size();
}
}
size
}
/// Add a child at the given index, given that none exists there already.
#[inline]
pub fn add_child(&mut self, idx: usize, node: Box<TrieNode<K, V>>) {
debug_assert!(self.children[idx].is_none());
self.child_count += 1;
self.children[idx] = Some(node);
}
/// Remove a child at the given index, if it exists.
#[inline]
pub fn take_child(&mut self, idx: usize) -> Option<Box<TrieNode<K, V>>> {
self.children[idx].take().map(|node| {
self.child_count -= 1;
node
})
}
/// Helper function for removing the single child of a node.
#[inline]
pub fn take_only_child(&mut self) -> Box<TrieNode<K, V>> {
debug_assert_eq!(self.child_count, 1);
for i in 0..BRANCH_FACTOR {
if let Some(child) = self.take_child(i) {
return child;
}
}
unreachable!("node with child_count 1 has no actual children");
}
/// Set the key and value of a node, given that it currently lacks one.
#[inline]
pub fn add_key_value(&mut self, key: K, value: V) {
debug_assert!(self.key_value.is_none());
self.key_value = Some(Box::new(KeyValue { key, value }));
}
/// Move the value out of a node, whilst checking that its key is as expected.
/// Can panic (see check_keys).
///
/// The key may be any borrowed form of the trie's key type, but TrieKey on the borrowed
/// form *must* match those for the key type
#[inline]
pub fn take_value<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
where
K: Borrow<Q>,
Q: TrieKey,
{
self.key_value.take().map(|kv| {
check_keys(kv.key.borrow(), key);
kv.value
})
}
/// Replace a value, returning the previous value if there was one.
#[inline]
pub fn replace_value(&mut self, key: K, value: V) -> Option<V> {
// TODO: optimise this?
let previous = self.take_value(&key);
self.add_key_value(key, value);
previous
}
/// Get a reference to this node if it has a value.
#[inline]
pub fn as_value_node(&self) -> Option<&TrieNode<K, V>> {
self.key_value.as_ref().map(|_| self)
}
/// Split a node at a given index in its key, transforming it into a prefix node of its
/// previous self.
#[inline]
pub fn split(&mut self, idx: usize) {
// Extract all the parts of the suffix node, starting with the key.
let key = self.key.split(idx);
// Key-value.
let key_value = self.key_value.take();
// Children.
let mut children: [Option<Box<TrieNode<K, V>>>; BRANCH_FACTOR] = Default::default();
for (i, child) in self.children.iter_mut().enumerate() {
if child.is_some() {
children[i] = child.take();
}
}
// Child count.
let child_count = self.child_count;
self.child_count = 1;
// Insert the collected items below what is now an empty prefix node.
let bucket = key.get(0) as usize;
self.children[bucket] = Some(Box::new(TrieNode {
key: key,
key_value,
children,
child_count,
}));
}
#[inline]
pub fn as_subtrie(&self, prefix: Nibblet) -> SubTrie<K, V> {
SubTrie {
prefix: prefix,
node: self,
}
}
#[inline]
pub fn as_subtrie_mut<'a>(
&'a mut self,
prefix: Nibblet,
length: &'a mut usize,
) -> SubTrieMut<'a, K, V> {
SubTrieMut {
prefix: prefix,
length: length,
node: self,
}
}
/// Check the integrity of a trie subtree (quite costly).
/// Return true and the size of the subtree if all checks are successful,
/// or false and a junk value if any test fails.
pub fn check_integrity_recursive(&self, prefix: &Nibblet) -> (bool, usize) {
let mut sub_tree_size = 0;
let is_root = prefix.len() == 0;
// Check that no value-less, non-root nodes have only 1 child.
if !is_root && self.child_count == 1 && self.key_value.is_none() {
println!("Value-less node with a single child.");
return (false, sub_tree_size);
}
// Check that all non-root key vector's have length > 1.
if !is_root && self.key.len() == 0 {
println!("Key length is 0 at non-root node.");
return (false, sub_tree_size);
}
// Check that the child count matches the actual number of children.
let child_count = self
.children
.iter()
.fold(0, |acc, e| acc + (e.is_some() as usize));
if child_count != self.child_count {
println!(
"Child count error, recorded: {}, actual: {}",
self.child_count, child_count
);
return (false, sub_tree_size);
}
// Compute the key fragments for this node, according to the trie.
let trie_key = prefix.clone().join(&self.key);
// Account for this node in the size check, and check its key.
if let Some(ref kv) = self.key_value {
sub_tree_size += 1;
let actual_key = kv.key.encode();
if trie_key != actual_key {
return (false, sub_tree_size);
}
}
// Recursively check children.
for i in 0..BRANCH_FACTOR {
if let Some(ref child) = self.children[i] {
match child.check_integrity_recursive(&trie_key) {
(false, _) => return (false, sub_tree_size),
(true, child_size) => sub_tree_size += child_size,
}
}
}
(true, sub_tree_size)
}
}
impl<K: TrieKey, V> Default for TrieNode<K, V> {
fn default() -> Self {
Self::new()
}
}