radix_trie/
trie_node.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
use crate::keys::*;
use crate::{SubTrie, SubTrieMut, BRANCH_FACTOR};
use std::borrow::Borrow;
use std::default::Default;

use nibble_vec::Nibblet;

#[derive(Debug, Clone)]
pub struct TrieNode<K, V> {
    /// Key fragments/bits associated with this node, such that joining the keys from all
    /// parent nodes and this node is equal to the bit-encoding of this node's key.
    pub key: Nibblet,

    /// The key and value stored at this node.
    pub key_value: Option<Box<KeyValue<K, V>>>,

    /// The number of children which are Some rather than None.
    pub child_count: usize,

    /// The children of this node stored such that the first nibble of each child key
    /// dictates the child's bucket.
    pub children: [Option<Box<TrieNode<K, V>>>; BRANCH_FACTOR],
}

#[derive(Debug, Clone)]
pub struct KeyValue<K, V> {
    pub key: K,
    pub value: V,
}

impl<K, V> TrieNode<K, V>
where
    K: TrieKey,
{
    /// Create a value-less, child-less TrieNode.
    #[inline]
    pub fn new() -> TrieNode<K, V> {
        TrieNode {
            key: Nibblet::new(),
            key_value: None,
            children: Default::default(),
            child_count: 0,
        }
    }

    /// Create a TrieNode with no children.
    #[inline]
    pub fn with_key_value(key_fragments: Nibblet, key: K, value: V) -> TrieNode<K, V> {
        TrieNode {
            key: key_fragments,
            key_value: Some(Box::new(KeyValue {
                key: key,
                value: value,
            })),
            children: Default::default(),
            child_count: 0,
        }
    }

    /// Get the key stored at this node, if any.
    #[inline]
    pub fn key(&self) -> Option<&K> {
        self.key_value.as_ref().map(|kv| &kv.key)
    }

    /// Get the value stored at this node, if any.
    #[inline]
    pub fn value(&self) -> Option<&V> {
        self.key_value.as_ref().map(|kv| &kv.value)
    }

    /// Get a mutable reference to the value stored at this node, if any.
    #[inline]
    pub fn value_mut(&mut self) -> Option<&mut V> {
        self.key_value.as_mut().map(|kv| &mut kv.value)
    }

    /// Get the value whilst checking a key match.
    ///
    /// The key may be any borrowed form of the trie's key type, but TrieKey on the borrowed
    /// form *must* match those for the key type.
    #[inline]
    pub fn value_checked<Q: ?Sized>(&self, key: &Q) -> Option<&V>
    where
        K: Borrow<Q>,
        Q: TrieKey,
    {
        self.key_value.as_ref().map(|kv| {
            check_keys(kv.key.borrow(), key);
            &kv.value
        })
    }

    /// Get a mutable value whilst checking a key match.
    ///
    /// The key may be any borrowed form of the trie's key type, but TrieKey on the borrowed
    /// form *must* match those for the key type.
    #[inline]
    pub fn value_checked_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
    where
        K: Borrow<Q>,
        Q: TrieKey,
    {
        self.key_value.as_mut().map(|kv| {
            check_keys(kv.key.borrow(), key);
            &mut kv.value
        })
    }

    /// Compute the number of keys and values in this node's subtrie.
    #[inline]
    pub fn compute_size(&self) -> usize {
        let mut size = self.key_value.is_some() as usize;

        for child in &self.children {
            if let Some(ref child) = *child {
                // TODO: could unroll this recursion
                size += child.compute_size();
            }
        }

        size
    }

    /// Add a child at the given index, given that none exists there already.
    #[inline]
    pub fn add_child(&mut self, idx: usize, node: Box<TrieNode<K, V>>) {
        debug_assert!(self.children[idx].is_none());
        self.child_count += 1;
        self.children[idx] = Some(node);
    }

    /// Remove a child at the given index, if it exists.
    #[inline]
    pub fn take_child(&mut self, idx: usize) -> Option<Box<TrieNode<K, V>>> {
        self.children[idx].take().map(|node| {
            self.child_count -= 1;
            node
        })
    }

    /// Helper function for removing the single child of a node.
    #[inline]
    pub fn take_only_child(&mut self) -> Box<TrieNode<K, V>> {
        debug_assert_eq!(self.child_count, 1);
        for i in 0..BRANCH_FACTOR {
            if let Some(child) = self.take_child(i) {
                return child;
            }
        }
        unreachable!("node with child_count 1 has no actual children");
    }

    /// Set the key and value of a node, given that it currently lacks one.
    #[inline]
    pub fn add_key_value(&mut self, key: K, value: V) {
        debug_assert!(self.key_value.is_none());
        self.key_value = Some(Box::new(KeyValue { key, value }));
    }

    /// Move the value out of a node, whilst checking that its key is as expected.
    /// Can panic (see check_keys).
    ///
    /// The key may be any borrowed form of the trie's key type, but TrieKey on the borrowed
    /// form *must* match those for the key type
    #[inline]
    pub fn take_value<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
    where
        K: Borrow<Q>,
        Q: TrieKey,
    {
        self.key_value.take().map(|kv| {
            check_keys(kv.key.borrow(), key);
            kv.value
        })
    }

    /// Replace a value, returning the previous value if there was one.
    #[inline]
    pub fn replace_value(&mut self, key: K, value: V) -> Option<V> {
        // TODO: optimise this?
        let previous = self.take_value(&key);
        self.add_key_value(key, value);
        previous
    }

    /// Get a reference to this node if it has a value.
    #[inline]
    pub fn as_value_node(&self) -> Option<&TrieNode<K, V>> {
        self.key_value.as_ref().map(|_| self)
    }

    /// Split a node at a given index in its key, transforming it into a prefix node of its
    /// previous self.
    #[inline]
    pub fn split(&mut self, idx: usize) {
        // Extract all the parts of the suffix node, starting with the key.
        let key = self.key.split(idx);

        // Key-value.
        let key_value = self.key_value.take();

        // Children.
        let mut children: [Option<Box<TrieNode<K, V>>>; BRANCH_FACTOR] = Default::default();

        for (i, child) in self.children.iter_mut().enumerate() {
            if child.is_some() {
                children[i] = child.take();
            }
        }

        // Child count.
        let child_count = self.child_count;
        self.child_count = 1;

        // Insert the collected items below what is now an empty prefix node.
        let bucket = key.get(0) as usize;
        self.children[bucket] = Some(Box::new(TrieNode {
            key: key,
            key_value,
            children,
            child_count,
        }));
    }
    #[inline]
    pub fn as_subtrie(&self, prefix: Nibblet) -> SubTrie<K, V> {
        SubTrie {
            prefix: prefix,
            node: self,
        }
    }
    #[inline]
    pub fn as_subtrie_mut<'a>(
        &'a mut self,
        prefix: Nibblet,
        length: &'a mut usize,
    ) -> SubTrieMut<'a, K, V> {
        SubTrieMut {
            prefix: prefix,
            length: length,
            node: self,
        }
    }

    /// Check the integrity of a trie subtree (quite costly).
    /// Return true and the size of the subtree if all checks are successful,
    /// or false and a junk value if any test fails.
    pub fn check_integrity_recursive(&self, prefix: &Nibblet) -> (bool, usize) {
        let mut sub_tree_size = 0;
        let is_root = prefix.len() == 0;

        // Check that no value-less, non-root nodes have only 1 child.
        if !is_root && self.child_count == 1 && self.key_value.is_none() {
            println!("Value-less node with a single child.");
            return (false, sub_tree_size);
        }

        // Check that all non-root key vector's have length > 1.
        if !is_root && self.key.len() == 0 {
            println!("Key length is 0 at non-root node.");
            return (false, sub_tree_size);
        }

        // Check that the child count matches the actual number of children.
        let child_count = self
            .children
            .iter()
            .fold(0, |acc, e| acc + (e.is_some() as usize));

        if child_count != self.child_count {
            println!(
                "Child count error, recorded: {}, actual: {}",
                self.child_count, child_count
            );
            return (false, sub_tree_size);
        }

        // Compute the key fragments for this node, according to the trie.
        let trie_key = prefix.clone().join(&self.key);

        // Account for this node in the size check, and check its key.
        if let Some(ref kv) = self.key_value {
            sub_tree_size += 1;

            let actual_key = kv.key.encode();

            if trie_key != actual_key {
                return (false, sub_tree_size);
            }
        }

        // Recursively check children.
        for i in 0..BRANCH_FACTOR {
            if let Some(ref child) = self.children[i] {
                match child.check_integrity_recursive(&trie_key) {
                    (false, _) => return (false, sub_tree_size),
                    (true, child_size) => sub_tree_size += child_size,
                }
            }
        }

        (true, sub_tree_size)
    }
}

impl<K: TrieKey, V> Default for TrieNode<K, V> {
    fn default() -> Self {
        Self::new()
    }
}