halo2_ecc/bigint/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
use halo2_base::{
gates::flex_gate::GateInstructions,
utils::{biguint_to_fe, decompose_biguint, fe_to_biguint, BigPrimeField, ScalarField},
AssignedValue, Context,
QuantumCell::Constant,
};
use num_bigint::{BigInt, BigUint};
use num_traits::Zero;
pub mod add_no_carry;
pub mod big_is_equal;
pub mod big_is_zero;
pub mod big_less_than;
pub mod carry_mod;
pub mod check_carry_mod_to_zero;
pub mod check_carry_to_zero;
pub mod mul_no_carry;
pub mod negative;
pub mod scalar_mul_and_add_no_carry;
pub mod scalar_mul_no_carry;
pub mod select;
pub mod select_by_indicator;
pub mod sub;
pub mod sub_no_carry;
#[derive(Clone, Debug, PartialEq, Default)]
pub enum BigIntStrategy {
// use existing gates
#[default]
Simple,
// vertical custom gates of length 4 for dot product between an unknown vector and a constant vector, both of length 3
// we restrict to gate of length 4 since this uses the same set of evaluation points Rotation(0..=3) as our simple gate
// CustomVerticalShort,
}
#[derive(Clone, Debug)]
pub struct OverflowInteger<F: ScalarField> {
pub limbs: Vec<AssignedValue<F>>,
// max bits of a limb, ignoring sign
pub max_limb_bits: usize,
// the standard limb bit that we use for pow of two limb base - to reduce overhead we just assume this is inferred from context (e.g., the chip stores it), so we stop storing it here
// pub limb_bits: usize,
}
impl<F: ScalarField> OverflowInteger<F> {
pub fn new(limbs: Vec<AssignedValue<F>>, max_limb_bits: usize) -> Self {
Self { limbs, max_limb_bits }
}
// convenience function for testing
#[cfg(test)]
pub fn to_bigint(&self, limb_bits: usize) -> BigInt
where
F: BigPrimeField,
{
use halo2_base::utils::fe_to_bigint;
self.limbs
.iter()
.rev()
.fold(BigInt::zero(), |acc, acell| (acc << limb_bits) + fe_to_bigint(acell.value()))
}
/// Computes `sum_i limbs[i] * limb_bases[i]` in native field `F`.
/// In practice assumes `limb_bases[i] = 2^{limb_bits * i}`.
pub fn evaluate_native(
ctx: &mut Context<F>,
gate: &impl GateInstructions<F>,
limbs: impl IntoIterator<Item = AssignedValue<F>>,
limb_bases: &[F],
) -> AssignedValue<F> {
// Constrain `out_native = sum_i out_assigned[i] * 2^{n*i}` in `F`
gate.inner_product(ctx, limbs, limb_bases.iter().map(|c| Constant(*c)))
}
}
/// Safe wrapper around a BigUint represented as a vector of limbs in **little endian**.
/// The underlying BigUint is represented by
/// sum<sub>i</sub> limbs\[i\] * 2<sup>limb_bits * i</sup>
///
/// To save memory we do not store the `limb_bits` and it must be inferred from context.
#[repr(transparent)]
#[derive(Clone, Debug)]
pub struct ProperUint<F: ScalarField>(pub(crate) Vec<AssignedValue<F>>);
impl<F: ScalarField> ProperUint<F> {
pub fn limbs(&self) -> &[AssignedValue<F>] {
self.0.as_slice()
}
pub fn into_overflow(self, limb_bits: usize) -> OverflowInteger<F> {
OverflowInteger::new(self.0, limb_bits)
}
/// Computes `sum_i limbs[i] * limb_bases[i]` in native field `F`.
/// In practice assumes `limb_bases[i] = 2^{limb_bits * i}`.
///
/// Assumes that `value` is the underlying BigUint value represented by `self`.
pub fn into_crt(
self,
ctx: &mut Context<F>,
gate: &impl GateInstructions<F>,
value: BigUint,
limb_bases: &[F],
limb_bits: usize,
) -> ProperCrtUint<F> {
// Constrain `out_native = sum_i out_assigned[i] * 2^{n*i}` in `F`
let native =
OverflowInteger::evaluate_native(ctx, gate, self.0.iter().copied(), limb_bases);
ProperCrtUint(CRTInteger::new(self.into_overflow(limb_bits), native, value.into()))
}
}
#[repr(transparent)]
#[derive(Clone, Debug)]
pub struct FixedOverflowInteger<F: ScalarField> {
pub limbs: Vec<F>,
}
impl<F: BigPrimeField> FixedOverflowInteger<F> {
pub fn construct(limbs: Vec<F>) -> Self {
Self { limbs }
}
/// Input: a BigInteger `value`, Output: the `FixedOverflowInteger` that represents the same value
/// Can handle signs
/// Note the representation of the integer will be in proper (no overflow) format, if signs are interpretted correctly
pub fn from_native(value: &BigUint, num_limbs: usize, limb_bits: usize) -> Self {
let limbs = decompose_biguint(value, num_limbs, limb_bits);
Self { limbs }
}
pub fn to_bigint(&self, limb_bits: usize) -> BigUint {
self.limbs
.iter()
.rev()
.fold(BigUint::zero(), |acc, x| (acc << limb_bits) + fe_to_biguint(x))
}
pub fn assign(self, ctx: &mut Context<F>) -> ProperUint<F> {
let assigned_limbs = self.limbs.into_iter().map(|limb| ctx.load_constant(limb)).collect();
ProperUint(assigned_limbs)
}
/// only use case is when coeffs has only a single 1, rest are 0
pub fn select_by_indicator(
gate: &impl GateInstructions<F>,
ctx: &mut Context<F>,
a: &[Self],
coeffs: &[AssignedValue<F>],
limb_bits: usize,
) -> OverflowInteger<F> {
let k = a[0].limbs.len();
let out_limbs = (0..k)
.map(|idx| {
let int_limbs = a.iter().map(|a| Constant(a.limbs[idx]));
gate.select_by_indicator(ctx, int_limbs, coeffs.iter().copied())
})
.collect();
OverflowInteger::new(out_limbs, limb_bits)
}
}
#[derive(Clone, Debug)]
pub struct CRTInteger<F: ScalarField> {
// keep track of an integer `a` using CRT as `a mod 2^t` and `a mod n`
// where `t = truncation.limbs.len() * truncation.limb_bits`
// `n = modulus::<F>`
// `value` is the actual integer value we want to keep track of
// we allow `value` to be a signed BigInt
// however `value` is really an element of Z/(2^t * n), so signs are only meaningful if:
// ASSUME `abs(value) < 2^t * n / 2`
// the IMPLICIT ASSUMPTION: `value (mod 2^t) = truncation` && `value (mod n) = native`
// this struct should only be used if the implicit assumption above is satisfied
pub truncation: OverflowInteger<F>,
pub native: AssignedValue<F>,
pub value: BigInt,
}
impl<F: ScalarField> AsRef<CRTInteger<F>> for CRTInteger<F> {
fn as_ref(&self) -> &CRTInteger<F> {
self
}
}
// Cloning all the time impacts readability so we'll just implement From<&T> for T
impl<'a, F: ScalarField> From<&'a CRTInteger<F>> for CRTInteger<F> {
fn from(x: &'a CRTInteger<F>) -> Self {
x.clone()
}
}
impl<F: ScalarField> CRTInteger<F> {
pub fn new(truncation: OverflowInteger<F>, native: AssignedValue<F>, value: BigInt) -> Self {
Self { truncation, native, value }
}
pub fn native(&self) -> &AssignedValue<F> {
&self.native
}
pub fn limbs(&self) -> &[AssignedValue<F>] {
self.truncation.limbs.as_slice()
}
}
/// Safe wrapper for representing a BigUint as a [`CRTInteger`] whose underlying BigUint value is in `[0, 2^t)`
/// where `t = truncation.limbs.len() * limb_bits`. This struct guarantees that
/// * each `truncation.limbs[i]` is ranged checked to be in `[0, 2^limb_bits)`,
/// * `native` is the evaluation of `sum_i truncation.limbs[i] * 2^{limb_bits * i} (mod modulus::<F>)` in the native field `F`
/// * `value` is equal to `sum_i truncation.limbs[i] * 2^{limb_bits * i}` as integers
///
/// Note this means `native` and `value` are completely determined by `truncation`. However, we still store them explicitly for convenience.
#[repr(transparent)]
#[derive(Clone, Debug)]
pub struct ProperCrtUint<F: ScalarField>(pub(crate) CRTInteger<F>);
impl<F: ScalarField> AsRef<CRTInteger<F>> for ProperCrtUint<F> {
fn as_ref(&self) -> &CRTInteger<F> {
&self.0
}
}
impl<'a, F: ScalarField> From<&'a ProperCrtUint<F>> for ProperCrtUint<F> {
fn from(x: &'a ProperCrtUint<F>) -> Self {
x.clone()
}
}
// cannot blanket implement From<Proper<T>> for T because of Rust
impl<F: ScalarField> From<ProperCrtUint<F>> for CRTInteger<F> {
fn from(x: ProperCrtUint<F>) -> Self {
x.0
}
}
impl<'a, F: ScalarField> From<&'a ProperCrtUint<F>> for CRTInteger<F> {
fn from(x: &'a ProperCrtUint<F>) -> Self {
x.0.clone()
}
}
impl<F: ScalarField> From<ProperCrtUint<F>> for ProperUint<F> {
fn from(x: ProperCrtUint<F>) -> Self {
ProperUint(x.0.truncation.limbs)
}
}
impl<F: ScalarField> ProperCrtUint<F> {
pub fn limbs(&self) -> &[AssignedValue<F>] {
self.0.limbs()
}
pub fn native(&self) -> &AssignedValue<F> {
self.0.native()
}
pub fn value(&self) -> BigUint {
self.0.value.to_biguint().expect("Value of proper uint should not be negative")
}
}
#[derive(Clone, Debug)]
pub struct FixedCRTInteger<F: ScalarField> {
// keep track of an integer `a` using CRT as `a mod 2^t` and `a mod n`
// where `t = truncation.limbs.len() * truncation.limb_bits`
// `n = modulus::<Fn>`
// `value` is the actual integer value we want to keep track of
// we allow `value` to be a signed BigInt
// however `value` is really an element of Z/(2^t * n), so signs are only meaningful if:
// ASSUME `abs(value) < 2^t * n / 2`
// the IMPLICIT ASSUMPTION: `value (mod 2^t) = truncation` && `value (mod n) = native`
// this struct should only be used if the implicit assumption above is satisfied
pub truncation: FixedOverflowInteger<F>,
pub value: BigUint,
}
impl<F: BigPrimeField> FixedCRTInteger<F> {
pub fn new(truncation: FixedOverflowInteger<F>, value: BigUint) -> Self {
Self { truncation, value }
}
/// Input: a BigInteger `value`, Output: the `FixedCRTInteger` that represents the same value
/// Can handle signs
pub fn from_native(value: BigUint, num_limbs: usize, limb_bits: usize) -> Self {
let truncation = FixedOverflowInteger::from_native(&value, num_limbs, limb_bits);
Self { truncation, value }
}
pub fn assign(
self,
ctx: &mut Context<F>,
limb_bits: usize,
native_modulus: &BigUint,
) -> ProperCrtUint<F> {
let assigned_truncation = self.truncation.assign(ctx).into_overflow(limb_bits);
let assigned_native = ctx.load_constant(biguint_to_fe(&(&self.value % native_modulus)));
ProperCrtUint(CRTInteger::new(assigned_truncation, assigned_native, self.value.into()))
}
}