halo2_axiom/poly/kzg/
msm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
use std::fmt::Debug;

use super::commitment::ParamsKZG;
use crate::{
    arithmetic::{best_multiexp, parallelize, CurveAffine},
    poly::commitment::MSM,
};
use group::{Curve, Group};
use pairing::{Engine, MillerLoopResult, MultiMillerLoop};

/// A multiscalar multiplication in the polynomial commitment scheme
#[derive(Clone, Default, Debug)]
pub struct MSMKZG<E: Engine> {
    pub(crate) scalars: Vec<E::Fr>,
    pub(crate) bases: Vec<E::G1>,
}

impl<E: Engine> MSMKZG<E> {
    /// Create an empty MSM instance
    pub fn new() -> Self {
        MSMKZG {
            scalars: vec![],
            bases: vec![],
        }
    }

    /// Prepares all scalars in the MSM to linear combination
    pub fn combine_with_base(&mut self, base: E::Fr) {
        use ff::Field;
        let mut acc = E::Fr::ONE;
        if !self.scalars.is_empty() {
            for scalar in self.scalars.iter_mut().rev() {
                *scalar *= &acc;
                acc *= base;
            }
        }
    }
}

impl<E> MSM<E::G1Affine> for MSMKZG<E>
where
    E: Engine + Debug,
    E::G1Affine: CurveAffine<ScalarExt = E::Fr, CurveExt = E::G1>,
{
    fn append_term(&mut self, scalar: E::Fr, point: E::G1) {
        self.scalars.push(scalar);
        self.bases.push(point);
    }

    fn add_msm(&mut self, other: &Self) {
        self.scalars.extend(other.scalars().iter());
        self.bases.extend(other.bases().iter());
    }

    fn scale(&mut self, factor: E::Fr) {
        if !self.scalars.is_empty() {
            parallelize(&mut self.scalars, |scalars, _| {
                for other_scalar in scalars {
                    *other_scalar *= &factor;
                }
            })
        }
    }

    fn check(&self) -> bool {
        bool::from(self.eval().is_identity())
    }

    fn eval(&self) -> E::G1 {
        use group::prime::PrimeCurveAffine;
        let mut bases = vec![E::G1Affine::identity(); self.scalars.len()];
        E::G1::batch_normalize(&self.bases, &mut bases);
        best_multiexp(&self.scalars, &bases)
    }

    fn bases(&self) -> Vec<E::G1> {
        self.bases.clone()
    }

    fn scalars(&self) -> Vec<E::Fr> {
        self.scalars.clone()
    }
}

/// A projective point collector
#[derive(Debug, Clone)]
pub(crate) struct PreMSM<E: Engine> {
    projectives_msms: Vec<MSMKZG<E>>,
}

impl<E: Engine + Debug> PreMSM<E> {
    pub(crate) fn new() -> Self {
        PreMSM {
            projectives_msms: vec![],
        }
    }

    pub(crate) fn normalize(self) -> MSMKZG<E> {
        let (scalars, bases) = self
            .projectives_msms
            .into_iter()
            .map(|msm| (msm.scalars, msm.bases))
            .unzip::<_, _, Vec<_>, Vec<_>>();

        MSMKZG {
            scalars: scalars.into_iter().flatten().collect(),
            bases: bases.into_iter().flatten().collect(),
        }
    }

    pub(crate) fn add_msm(&mut self, other: MSMKZG<E>) {
        self.projectives_msms.push(other);
    }
}

impl<'params, E: MultiMillerLoop + Debug> From<&'params ParamsKZG<E>> for DualMSM<'params, E> {
    fn from(params: &'params ParamsKZG<E>) -> Self {
        DualMSM::new(params)
    }
}

/// Two channel MSM accumulator
#[derive(Debug, Clone)]
pub struct DualMSM<'a, E: Engine> {
    pub(crate) params: &'a ParamsKZG<E>,
    pub(crate) left: MSMKZG<E>,
    pub(crate) right: MSMKZG<E>,
}

impl<'a, E: MultiMillerLoop + Debug> DualMSM<'a, E> {
    /// Create a new two channel MSM accumulator instance
    pub fn new(params: &'a ParamsKZG<E>) -> Self {
        Self {
            params,
            left: MSMKZG::new(),
            right: MSMKZG::new(),
        }
    }
}

impl<'a, E: MultiMillerLoop + Debug> DualMSM<'a, E>
where
    E::G1Affine: CurveAffine<ScalarExt = E::Fr, CurveExt = E::G1>,
{
    /// Scale all scalars in the MSM by some scaling factor
    pub fn scale(&mut self, e: E::Fr) {
        self.left.scale(e);
        self.right.scale(e);
    }

    /// Add another multiexp into this one
    pub fn add_msm(&mut self, other: Self) {
        self.left.add_msm(&other.left);
        self.right.add_msm(&other.right);
    }

    /// Performs final pairing check with given verifier params and two channel linear combination
    pub fn check(self) -> bool {
        let s_g2_prepared = E::G2Prepared::from(self.params.s_g2);
        let n_g2_prepared = E::G2Prepared::from(-self.params.g2);

        let left = self.left.eval();
        let right = self.right.eval();

        let (term_1, term_2) = (
            (&left.into(), &s_g2_prepared),
            (&right.into(), &n_g2_prepared),
        );
        let terms = &[term_1, term_2];

        bool::from(
            E::multi_miller_loop(&terms[..])
                .final_exponentiation()
                .is_identity(),
        )
    }
}