halo2_axiom/plonk/lookup.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
use super::circuit::Expression;
use ff::Field;
use std::fmt::{self, Debug};
pub(crate) mod prover;
pub(crate) mod verifier;
#[derive(Clone)]
pub struct Argument<F: Field> {
pub(crate) name: String,
pub(crate) input_expressions: Vec<Expression<F>>,
pub(crate) table_expressions: Vec<Expression<F>>,
}
impl<F: Field> Debug for Argument<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Argument")
.field("input_expressions", &self.input_expressions)
.field("table_expressions", &self.table_expressions)
.finish()
}
}
impl<F: Field> Argument<F> {
/// Constructs a new lookup argument.
///
/// `table_map` is a sequence of `(input, table)` tuples.
pub fn new<S: AsRef<str>>(name: S, table_map: Vec<(Expression<F>, Expression<F>)>) -> Self {
let (input_expressions, table_expressions) = table_map.into_iter().unzip();
Argument {
name: name.as_ref().to_string(),
input_expressions,
table_expressions,
}
}
pub(crate) fn required_degree(&self) -> usize {
assert_eq!(self.input_expressions.len(), self.table_expressions.len());
// The first value in the permutation poly should be one.
// degree 2:
// l_0(X) * (1 - z(X)) = 0
//
// The "last" value in the permutation poly should be a boolean, for
// completeness and soundness.
// degree 3:
// l_last(X) * (z(X)^2 - z(X)) = 0
//
// Enable the permutation argument for only the rows involved.
// degree (2 + input_degree + table_degree) or 4, whichever is larger:
// (1 - (l_last(X) + l_blind(X))) * (
// z(\omega X) (a'(X) + \beta) (s'(X) + \gamma)
// - z(X) (\theta^{m-1} a_0(X) + ... + a_{m-1}(X) + \beta) (\theta^{m-1} s_0(X) + ... + s_{m-1}(X) + \gamma)
// ) = 0
//
// The first two values of a' and s' should be the same.
// degree 2:
// l_0(X) * (a'(X) - s'(X)) = 0
//
// Either the two values are the same, or the previous
// value of a' is the same as the current value.
// degree 3:
// (1 - (l_last(X) + l_blind(X))) * (a′(X) − s′(X))⋅(a′(X) − a′(\omega^{-1} X)) = 0
let mut input_degree = 1;
for expr in self.input_expressions.iter() {
input_degree = std::cmp::max(input_degree, expr.degree());
}
let mut table_degree = 1;
for expr in self.table_expressions.iter() {
table_degree = std::cmp::max(table_degree, expr.degree());
}
// In practice because input_degree and table_degree are initialized to
// one, the latter half of this max() invocation is at least 4 always,
// rendering this call pointless except to be explicit in case we change
// the initialization of input_degree/table_degree in the future.
std::cmp::max(
// (1 - (l_last + l_blind)) z(\omega X) (a'(X) + \beta) (s'(X) + \gamma)
4,
// (1 - (l_last + l_blind)) z(X) (\theta^{m-1} a_0(X) + ... + a_{m-1}(X) + \beta) (\theta^{m-1} s_0(X) + ... + s_{m-1}(X) + \gamma)
2 + input_degree + table_degree,
)
}
/// Returns input of this argument
pub fn input_expressions(&self) -> &Vec<Expression<F>> {
&self.input_expressions
}
/// Returns table of this argument
pub fn table_expressions(&self) -> &Vec<Expression<F>> {
&self.table_expressions
}
/// Returns name of this argument
pub fn name(&self) -> &str {
&self.name
}
}