ring/rsa/
keypair.rs

1// Copyright 2015-2016 Brian Smith.
2//
3// Permission to use, copy, modify, and/or distribute this software for any
4// purpose with or without fee is hereby granted, provided that the above
5// copyright notice and this permission notice appear in all copies.
6//
7// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14
15use super::{
16    padding::RsaEncoding, KeyPairComponents, PublicExponent, PublicKey, PublicKeyComponents, N,
17};
18
19/// RSA PKCS#1 1.5 signatures.
20use crate::{
21    arithmetic::{
22        bigint,
23        montgomery::{R, RR, RRR},
24        LimbSliceError,
25    },
26    bits::BitLength,
27    cpu, digest,
28    error::{self, KeyRejected},
29    io::der,
30    pkcs8, rand, signature,
31};
32
33/// An RSA key pair, used for signing.
34pub struct KeyPair {
35    p: PrivateCrtPrime<P>,
36    q: PrivateCrtPrime<Q>,
37    qInv: bigint::Elem<P, R>,
38    public: PublicKey,
39}
40
41derive_debug_via_field!(KeyPair, stringify!(RsaKeyPair), public);
42
43impl KeyPair {
44    /// Parses an unencrypted PKCS#8-encoded RSA private key.
45    ///
46    /// This will generate a 2048-bit RSA private key of the correct form using
47    /// OpenSSL's command line tool:
48    ///
49    /// ```sh
50    ///    openssl genpkey -algorithm RSA \
51    ///        -pkeyopt rsa_keygen_bits:2048 \
52    ///        -pkeyopt rsa_keygen_pubexp:65537 | \
53    ///      openssl pkcs8 -topk8 -nocrypt -outform der > rsa-2048-private-key.pk8
54    /// ```
55    ///
56    /// This will generate a 3072-bit RSA private key of the correct form:
57    ///
58    /// ```sh
59    ///    openssl genpkey -algorithm RSA \
60    ///        -pkeyopt rsa_keygen_bits:3072 \
61    ///        -pkeyopt rsa_keygen_pubexp:65537 | \
62    ///      openssl pkcs8 -topk8 -nocrypt -outform der > rsa-3072-private-key.pk8
63    /// ```
64    ///
65    /// Often, keys generated for use in OpenSSL-based software are stored in
66    /// the Base64 “PEM” format without the PKCS#8 wrapper. Such keys can be
67    /// converted to binary PKCS#8 form using the OpenSSL command line tool like
68    /// this:
69    ///
70    /// ```sh
71    /// openssl pkcs8 -topk8 -nocrypt -outform der \
72    ///     -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
73    /// ```
74    ///
75    /// Base64 (“PEM”) PKCS#8-encoded keys can be converted to the binary PKCS#8
76    /// form like this:
77    ///
78    /// ```sh
79    /// openssl pkcs8 -nocrypt -outform der \
80    ///     -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
81    /// ```
82    ///
83    /// See [`Self::from_components`] for more details on how the input is
84    /// validated.
85    ///
86    /// See [RFC 5958] and [RFC 3447 Appendix A.1.2] for more details of the
87    /// encoding of the key.
88    ///
89    /// [NIST SP-800-56B rev. 1]:
90    ///     http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
91    ///
92    /// [RFC 3447 Appendix A.1.2]:
93    ///     https://tools.ietf.org/html/rfc3447#appendix-A.1.2
94    ///
95    /// [RFC 5958]:
96    ///     https://tools.ietf.org/html/rfc5958
97    pub fn from_pkcs8(pkcs8: &[u8]) -> Result<Self, KeyRejected> {
98        const RSA_ENCRYPTION: &[u8] = include_bytes!("../data/alg-rsa-encryption.der");
99        let (der, _) = pkcs8::unwrap_key_(
100            untrusted::Input::from(RSA_ENCRYPTION),
101            pkcs8::Version::V1Only,
102            untrusted::Input::from(pkcs8),
103        )?;
104        Self::from_der(der.as_slice_less_safe())
105    }
106
107    /// Parses an RSA private key that is not inside a PKCS#8 wrapper.
108    ///
109    /// The private key must be encoded as a binary DER-encoded ASN.1
110    /// `RSAPrivateKey` as described in [RFC 3447 Appendix A.1.2]). In all other
111    /// respects, this is just like `from_pkcs8()`. See the documentation for
112    /// `from_pkcs8()` for more details.
113    ///
114    /// It is recommended to use `from_pkcs8()` (with a PKCS#8-encoded key)
115    /// instead.
116    ///
117    /// See [`Self::from_components()`] for more details on how the input is
118    /// validated.
119    ///
120    /// [RFC 3447 Appendix A.1.2]:
121    ///     https://tools.ietf.org/html/rfc3447#appendix-A.1.2
122    ///
123    /// [NIST SP-800-56B rev. 1]:
124    ///     http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
125    pub fn from_der(input: &[u8]) -> Result<Self, KeyRejected> {
126        untrusted::Input::from(input).read_all(KeyRejected::invalid_encoding(), |input| {
127            der::nested(
128                input,
129                der::Tag::Sequence,
130                KeyRejected::invalid_encoding(),
131                Self::from_der_reader,
132            )
133        })
134    }
135
136    fn from_der_reader(input: &mut untrusted::Reader) -> Result<Self, KeyRejected> {
137        let version = der::small_nonnegative_integer(input)
138            .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
139        if version != 0 {
140            return Err(KeyRejected::version_not_supported());
141        }
142
143        fn nonnegative_integer<'a>(
144            input: &mut untrusted::Reader<'a>,
145        ) -> Result<&'a [u8], KeyRejected> {
146            der::nonnegative_integer(input)
147                .map(|input| input.as_slice_less_safe())
148                .map_err(|error::Unspecified| KeyRejected::invalid_encoding())
149        }
150
151        let n = nonnegative_integer(input)?;
152        let e = nonnegative_integer(input)?;
153        let d = nonnegative_integer(input)?;
154        let p = nonnegative_integer(input)?;
155        let q = nonnegative_integer(input)?;
156        let dP = nonnegative_integer(input)?;
157        let dQ = nonnegative_integer(input)?;
158        let qInv = nonnegative_integer(input)?;
159
160        let components = KeyPairComponents {
161            public_key: PublicKeyComponents { n, e },
162            d,
163            p,
164            q,
165            dP,
166            dQ,
167            qInv,
168        };
169
170        Self::from_components(&components)
171    }
172
173    /// Constructs an RSA private key from its big-endian-encoded components.
174    ///
175    /// Only two-prime (not multi-prime) keys are supported. The public modulus
176    /// (n) must be at least 2047 bits. The public modulus must be no larger
177    /// than 4096 bits. It is recommended that the public modulus be exactly
178    /// 2048 or 3072 bits. The public exponent must be at least 65537 and must
179    /// be no more than 33 bits long.
180    ///
181    /// The private key is validated according to [NIST SP-800-56B rev. 1]
182    /// section 6.4.1.4.3, crt_pkv (Intended Exponent-Creation Method Unknown),
183    /// with the following exceptions:
184    ///
185    /// * Section 6.4.1.2.1, Step 1: Neither a target security level nor an
186    ///   expected modulus length is provided as a parameter, so checks
187    ///   regarding these expectations are not done.
188    /// * Section 6.4.1.2.1, Step 3: Since neither the public key nor the
189    ///   expected modulus length is provided as a parameter, the consistency
190    ///   check between these values and the private key's value of n isn't
191    ///   done.
192    /// * Section 6.4.1.2.1, Step 5: No primality tests are done, both for
193    ///   performance reasons and to avoid any side channels that such tests
194    ///   would provide.
195    /// * Section 6.4.1.2.1, Step 6, and 6.4.1.4.3, Step 7:
196    ///   * *ring* has a slightly looser lower bound for the values of `p`
197    ///     and `q` than what the NIST document specifies. This looser lower
198    ///     bound matches what most other crypto libraries do. The check might
199    ///     be tightened to meet NIST's requirements in the future. Similarly,
200    ///     the check that `p` and `q` are not too close together is skipped
201    ///     currently, but may be added in the future.
202    ///   * The validity of the mathematical relationship of `dP`, `dQ`, `e`
203    ///     and `n` is verified only during signing. Some size checks of `d`,
204    ///     `dP` and `dQ` are performed at construction, but some NIST checks
205    ///     are skipped because they would be expensive and/or they would leak
206    ///     information through side channels. If a preemptive check of the
207    ///     consistency of `dP`, `dQ`, `e` and `n` with each other is
208    ///     necessary, that can be done by signing any message with the key
209    ///     pair.
210    ///
211    ///   * `d` is not fully validated, neither at construction nor during
212    ///     signing. This is OK as far as *ring*'s usage of the key is
213    ///     concerned because *ring* never uses the value of `d` (*ring* always
214    ///     uses `p`, `q`, `dP` and `dQ` via the Chinese Remainder Theorem,
215    ///     instead). However, *ring*'s checks would not be sufficient for
216    ///     validating a key pair for use by some other system; that other
217    ///     system must check the value of `d` itself if `d` is to be used.
218    pub fn from_components<Public, Private>(
219        components: &KeyPairComponents<Public, Private>,
220    ) -> Result<Self, KeyRejected>
221    where
222        Public: AsRef<[u8]>,
223        Private: AsRef<[u8]>,
224    {
225        let components = KeyPairComponents {
226            public_key: PublicKeyComponents {
227                n: components.public_key.n.as_ref(),
228                e: components.public_key.e.as_ref(),
229            },
230            d: components.d.as_ref(),
231            p: components.p.as_ref(),
232            q: components.q.as_ref(),
233            dP: components.dP.as_ref(),
234            dQ: components.dQ.as_ref(),
235            qInv: components.qInv.as_ref(),
236        };
237        Self::from_components_(&components, cpu::features())
238    }
239
240    fn from_components_(
241        &KeyPairComponents {
242            public_key,
243            d,
244            p,
245            q,
246            dP,
247            dQ,
248            qInv,
249        }: &KeyPairComponents<&[u8]>,
250        cpu_features: cpu::Features,
251    ) -> Result<Self, KeyRejected> {
252        let d = untrusted::Input::from(d);
253        let p = untrusted::Input::from(p);
254        let q = untrusted::Input::from(q);
255        let dP = untrusted::Input::from(dP);
256        let dQ = untrusted::Input::from(dQ);
257        let qInv = untrusted::Input::from(qInv);
258
259        // XXX: Some steps are done out of order, but the NIST steps are worded
260        // in such a way that it is clear that NIST intends for them to be done
261        // in order. TODO: Does this matter at all?
262
263        // 6.4.1.4.3/6.4.1.2.1 - Step 1.
264
265        // Step 1.a is omitted, as explained above.
266
267        // Step 1.b is omitted per above. Instead, we check that the public
268        // modulus is 2048 to `PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS` bits.
269        // XXX: The maximum limit of 4096 bits is primarily due to lack of
270        // testing of larger key sizes; see, in particular,
271        // https://www.mail-archive.com/openssl-dev@openssl.org/msg44586.html
272        // and
273        // https://www.mail-archive.com/openssl-dev@openssl.org/msg44759.html.
274        // Also, this limit might help with memory management decisions later.
275
276        // Step 1.c. We validate e >= 65537.
277        let n = untrusted::Input::from(public_key.n);
278        let e = untrusted::Input::from(public_key.e);
279        let public_key = PublicKey::from_modulus_and_exponent(
280            n,
281            e,
282            BitLength::from_bits(2048),
283            super::PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS,
284            PublicExponent::_65537,
285            cpu_features,
286        )?;
287
288        let n_one = public_key.inner().n().oneRR();
289        let n = &public_key.inner().n().value(cpu_features);
290
291        // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 2.
292
293        // 6.4.1.4.3 Step 3.
294
295        // Step 3.a is done below, out of order.
296        // Step 3.b is unneeded since `n_bits` is derived here from `n`.
297
298        // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 4. (We don't need to recover
299        // the prime factors since they are already given.)
300
301        // 6.4.1.4.3 - Step 5.
302
303        // Steps 5.a and 5.b are omitted, as explained above.
304
305        let n_bits = public_key.inner().n().len_bits();
306
307        let p = PrivatePrime::new(p, n_bits, cpu_features)?;
308        let q = PrivatePrime::new(q, n_bits, cpu_features)?;
309
310        // TODO: Step 5.i
311        //
312        // 3.b is unneeded since `n_bits` is derived here from `n`.
313
314        // 6.4.1.4.3 - Step 3.a (out of order).
315        //
316        // Verify that p * q == n. We restrict ourselves to modular
317        // multiplication. We rely on the fact that we've verified
318        // 0 < q < p < n. We check that q and p are close to sqrt(n) and then
319        // assume that these preconditions are enough to let us assume that
320        // checking p * q == 0 (mod n) is equivalent to checking p * q == n.
321        let q_mod_n = q
322            .modulus
323            .to_elem(n)
324            .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
325        let p_mod_n = p
326            .modulus
327            .to_elem(n)
328            .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
329        let p_mod_n = bigint::elem_mul(n_one, p_mod_n, n);
330        let pq_mod_n = bigint::elem_mul(&q_mod_n, p_mod_n, n);
331        if !pq_mod_n.is_zero() {
332            return Err(KeyRejected::inconsistent_components());
333        }
334
335        // 6.4.1.4.3/6.4.1.2.1 - Step 6.
336
337        // Step 6.a, partial.
338        //
339        // First, validate `2**half_n_bits < d`. Since 2**half_n_bits has a bit
340        // length of half_n_bits + 1, this check gives us 2**half_n_bits <= d,
341        // and knowing d is odd makes the inequality strict.
342        let d = bigint::OwnedModulusValue::<D>::from_be_bytes(d)
343            .map_err(|_| KeyRejected::invalid_component())?;
344        if !(n_bits.half_rounded_up() < d.len_bits()) {
345            return Err(KeyRejected::inconsistent_components());
346        }
347        // XXX: This check should be `d < LCM(p - 1, q - 1)`, but we don't have
348        // a good way of calculating LCM, so it is omitted, as explained above.
349        d.verify_less_than(n)
350            .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
351
352        // Step 6.b is omitted as explained above.
353
354        let pm = &p.modulus.modulus(cpu_features);
355
356        // 6.4.1.4.3 - Step 7.
357
358        // Step 7.c.
359        let qInv = bigint::Elem::from_be_bytes_padded(qInv, pm)
360            .map_err(|error::Unspecified| KeyRejected::invalid_component())?;
361
362        // Steps 7.d and 7.e are omitted per the documentation above, and
363        // because we don't (in the long term) have a good way to do modulo
364        // with an even modulus.
365
366        // Step 7.f.
367        let qInv = bigint::elem_mul(p.oneRR.as_ref(), qInv, pm);
368        let q_mod_p = bigint::elem_reduced(pm.alloc_zero(), &q_mod_n, pm, q.modulus.len_bits());
369        let q_mod_p = bigint::elem_mul(p.oneRR.as_ref(), q_mod_p, pm);
370        bigint::verify_inverses_consttime(&qInv, q_mod_p, pm)
371            .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
372
373        // This should never fail since `n` and `e` were validated above.
374
375        let p = PrivateCrtPrime::new(p, dP, cpu_features)?;
376        let q = PrivateCrtPrime::new(q, dQ, cpu_features)?;
377
378        Ok(Self {
379            p,
380            q,
381            qInv,
382            public: public_key,
383        })
384    }
385
386    /// Returns a reference to the public key.
387    pub fn public(&self) -> &PublicKey {
388        &self.public
389    }
390
391    /// Returns the length in bytes of the key pair's public modulus.
392    ///
393    /// A signature has the same length as the public modulus.
394    #[deprecated = "Use `public().modulus_len()`"]
395    #[inline]
396    pub fn public_modulus_len(&self) -> usize {
397        self.public().modulus_len()
398    }
399}
400
401impl signature::KeyPair for KeyPair {
402    type PublicKey = PublicKey;
403
404    fn public_key(&self) -> &Self::PublicKey {
405        self.public()
406    }
407}
408
409struct PrivatePrime<M> {
410    modulus: bigint::OwnedModulus<M>,
411    oneRR: bigint::One<M, RR>,
412}
413
414impl<M> PrivatePrime<M> {
415    fn new(
416        p: untrusted::Input,
417        n_bits: BitLength,
418        cpu_features: cpu::Features,
419    ) -> Result<Self, KeyRejected> {
420        let p = bigint::OwnedModulusValue::from_be_bytes(p)?;
421
422        // 5.c / 5.g:
423        //
424        // TODO: First, stop if `p < (√2) * 2**((nBits/2) - 1)`.
425        // TODO: First, stop if `q < (√2) * 2**((nBits/2) - 1)`.
426        //
427        // Second, stop if `p > 2**(nBits/2) - 1`.
428        // Second, stop if `q > 2**(nBits/2) - 1`.
429        if p.len_bits() != n_bits.half_rounded_up() {
430            return Err(KeyRejected::inconsistent_components());
431        }
432
433        if p.len_bits().as_bits() % 512 != 0 {
434            return Err(KeyRejected::private_modulus_len_not_multiple_of_512_bits());
435        }
436
437        // TODO: Step 5.d: Verify GCD(p - 1, e) == 1.
438        // TODO: Step 5.h: Verify GCD(q - 1, e) == 1.
439
440        // Steps 5.e and 5.f are omitted as explained above.
441        let p = bigint::OwnedModulus::from(p);
442        let pm = p.modulus(cpu_features);
443        let oneRR = bigint::One::newRR(pm.alloc_zero(), &pm);
444
445        Ok(Self { modulus: p, oneRR })
446    }
447}
448
449struct PrivateCrtPrime<M> {
450    modulus: bigint::OwnedModulus<M>,
451    oneRRR: bigint::One<M, RRR>,
452    exponent: bigint::PrivateExponent,
453}
454
455impl<M> PrivateCrtPrime<M> {
456    /// Constructs a `PrivateCrtPrime` from the private prime `p` and `dP` where
457    /// dP == d % (p - 1).
458    fn new(
459        p: PrivatePrime<M>,
460        dP: untrusted::Input,
461        cpu_features: cpu::Features,
462    ) -> Result<Self, KeyRejected> {
463        let m = &p.modulus.modulus(cpu_features);
464        // [NIST SP-800-56B rev. 1] 6.4.1.4.3 - Steps 7.a & 7.b.
465        let dP = bigint::PrivateExponent::from_be_bytes_padded(dP, m)
466            .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
467
468        // XXX: Steps 7.d and 7.e are omitted. We don't check that
469        // `dP == d % (p - 1)` because we don't (in the long term) have a good
470        // way to do modulo with an even modulus. Instead we just check that
471        // `1 <= dP < p - 1`. We'll check it, to some unknown extent, when we
472        // do the private key operation, since we verify that the result of the
473        // private key operation using the CRT parameters is consistent with `n`
474        // and `e`. TODO: Either prove that what we do is sufficient, or make
475        // it so.
476
477        let oneRRR = bigint::One::newRRR(p.oneRR, m);
478
479        Ok(Self {
480            modulus: p.modulus,
481            oneRRR,
482            exponent: dP,
483        })
484    }
485}
486
487fn elem_exp_consttime<M>(
488    c: &bigint::Elem<N>,
489    p: &PrivateCrtPrime<M>,
490    other_prime_len_bits: BitLength,
491    cpu_features: cpu::Features,
492) -> Result<bigint::Elem<M>, error::Unspecified> {
493    let m = &p.modulus.modulus(cpu_features);
494    bigint::elem_exp_consttime(
495        m.alloc_zero(),
496        c,
497        &p.oneRRR,
498        &p.exponent,
499        m,
500        other_prime_len_bits,
501    )
502    .map_err(error::erase::<LimbSliceError>)
503}
504
505// Type-level representations of the different moduli used in RSA signing, in
506// addition to `super::N`. See `super::bigint`'s modulue-level documentation.
507
508enum P {}
509
510enum Q {}
511
512enum D {}
513
514impl KeyPair {
515    /// Computes the signature of `msg` and writes it into `signature`.
516    ///
517    /// `msg` is digested using the digest algorithm from `padding_alg` and the
518    /// digest is then padded using the padding algorithm from `padding_alg`.
519    ///
520    /// The signature it written into `signature`; `signature`'s length must be
521    /// exactly the length returned by `self::public().modulus_len()` or else
522    /// an error will be returned. On failure, `signature` may contain
523    /// intermediate results, but won't contain anything that would endanger the
524    /// private key.
525    ///
526    /// `rng` may be used to randomize the padding (e.g. for PSS).
527    ///
528    /// Many other crypto libraries have signing functions that takes a
529    /// precomputed digest as input, instead of the message to digest. This
530    /// function does *not* take a precomputed digest; instead, `sign`
531    /// calculates the digest itself.
532    pub fn sign(
533        &self,
534        padding_alg: &'static dyn RsaEncoding,
535        rng: &dyn rand::SecureRandom,
536        msg: &[u8],
537        signature: &mut [u8],
538    ) -> Result<(), error::Unspecified> {
539        let cpu_features = cpu::features();
540
541        if signature.len() != self.public().modulus_len() {
542            return Err(error::Unspecified);
543        }
544
545        let m_hash = digest::digest(padding_alg.digest_alg(), msg);
546
547        // Use the output buffer as the scratch space for the signature to
548        // reduce the required stack space.
549        padding_alg.encode(m_hash, signature, self.public().inner().n().len_bits(), rng)?;
550
551        // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem
552        // with Garner's algorithm.
553
554        // Steps 1 and 2.
555        let m = self.private_exponentiate(signature, cpu_features)?;
556
557        // Step 3.
558        m.fill_be_bytes(signature);
559
560        Ok(())
561    }
562
563    /// Returns base**d (mod n).
564    ///
565    /// This does not return or write any intermediate results into any buffers
566    /// that are provided by the caller so that no intermediate state will be
567    /// leaked that would endanger the private key.
568    ///
569    /// Panics if `in_out` is not `self.public().modulus_len()`.
570    fn private_exponentiate(
571        &self,
572        base: &[u8],
573        cpu_features: cpu::Features,
574    ) -> Result<bigint::Elem<N>, error::Unspecified> {
575        assert_eq!(base.len(), self.public().modulus_len());
576
577        // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem
578        // with Garner's algorithm.
579
580        let n = &self.public.inner().n().value(cpu_features);
581        let n_one = self.public.inner().n().oneRR();
582
583        // Step 1. The value zero is also rejected.
584        let base = bigint::Elem::from_be_bytes_padded(untrusted::Input::from(base), n)?;
585
586        // Step 2
587        let c = base;
588
589        // Step 2.b.i.
590        let q_bits = self.q.modulus.len_bits();
591        let m_1 = elem_exp_consttime(&c, &self.p, q_bits, cpu_features)?;
592        let m_2 = elem_exp_consttime(&c, &self.q, self.p.modulus.len_bits(), cpu_features)?;
593
594        // Step 2.b.ii isn't needed since there are only two primes.
595
596        // Step 2.b.iii.
597        let h = {
598            let p = &self.p.modulus.modulus(cpu_features);
599            let m_2 = bigint::elem_reduced_once(p.alloc_zero(), &m_2, p, q_bits);
600            let m_1_minus_m_2 = bigint::elem_sub(m_1, &m_2, p);
601            bigint::elem_mul(&self.qInv, m_1_minus_m_2, p)
602        };
603
604        // Step 2.b.iv. The reduction in the modular multiplication isn't
605        // necessary because `h < p` and `p * q == n` implies `h * q < n`.
606        // Modular arithmetic is used simply to avoid implementing
607        // non-modular arithmetic.
608        let p_bits = self.p.modulus.len_bits();
609        let h = bigint::elem_widen(n.alloc_zero(), h, n, p_bits)?;
610        let q_mod_n = self.q.modulus.to_elem(n)?;
611        let q_mod_n = bigint::elem_mul(n_one, q_mod_n, n);
612        let q_times_h = bigint::elem_mul(&q_mod_n, h, n);
613        let m_2 = bigint::elem_widen(n.alloc_zero(), m_2, n, q_bits)?;
614        let m = bigint::elem_add(m_2, q_times_h, n);
615
616        // Step 2.b.v isn't needed since there are only two primes.
617
618        // Verify the result to protect against fault attacks as described
619        // in "On the Importance of Checking Cryptographic Protocols for
620        // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton.
621        // This check is cheap assuming `e` is small, which is ensured during
622        // `KeyPair` construction. Note that this is the only validation of `e`
623        // that is done other than basic checks on its size, oddness, and
624        // minimum value, since the relationship of `e` to `d`, `p`, and `q` is
625        // not verified during `KeyPair` construction.
626        {
627            let verify = n.alloc_zero();
628            let verify = self
629                .public
630                .inner()
631                .exponentiate_elem(verify, &m, cpu_features);
632            bigint::elem_verify_equal_consttime(&verify, &c)?;
633        }
634
635        // Step 3 will be done by the caller.
636
637        Ok(m)
638    }
639}
640
641#[cfg(test)]
642mod tests {
643    use super::*;
644    use crate::test;
645    use alloc::vec;
646
647    #[test]
648    fn test_rsakeypair_private_exponentiate() {
649        let cpu = cpu::features();
650        test::run(
651            test_file!("keypair_private_exponentiate_tests.txt"),
652            |section, test_case| {
653                assert_eq!(section, "");
654
655                let key = test_case.consume_bytes("Key");
656                let key = KeyPair::from_pkcs8(&key).unwrap();
657                let test_cases = &[
658                    test_case.consume_bytes("p"),
659                    test_case.consume_bytes("p_plus_1"),
660                    test_case.consume_bytes("p_minus_1"),
661                    test_case.consume_bytes("q"),
662                    test_case.consume_bytes("q_plus_1"),
663                    test_case.consume_bytes("q_minus_1"),
664                ];
665                for test_case in test_cases {
666                    // THe call to `elem_verify_equal_consttime` will cause
667                    // `private_exponentiate` to fail if the computation is
668                    // incorrect.
669                    let mut padded = vec![0; key.public.modulus_len()];
670                    let zeroes = padded.len() - test_case.len();
671                    padded[zeroes..].copy_from_slice(test_case);
672                    let _: bigint::Elem<_> = key.private_exponentiate(&padded, cpu).unwrap();
673                }
674                Ok(())
675            },
676        );
677    }
678}