halo2_proofs/plonk/permutation/
keygen.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
use ff::Field;
use group::Curve;

use super::{Argument, ProvingKey, VerifyingKey};
use crate::{
    arithmetic::{CurveAffine, FieldExt},
    plonk::{Any, Column, Error},
    poly::{
        commitment::{Blind, Params},
        EvaluationDomain,
    },
};

#[derive(Debug)]
pub(crate) struct Assembly {
    columns: Vec<Column<Any>>,
    pub(crate) mapping: Vec<Vec<(usize, usize)>>,
    aux: Vec<Vec<(usize, usize)>>,
    sizes: Vec<Vec<usize>>,
}

impl Assembly {
    pub(crate) fn new(n: usize, p: &Argument) -> Self {
        // Initialize the copy vector to keep track of copy constraints in all
        // the permutation arguments.
        let mut columns = vec![];
        for i in 0..p.columns.len() {
            // Computes [(i, 0), (i, 1), ..., (i, n - 1)]
            columns.push((0..n).map(|j| (i, j)).collect());
        }

        // Before any equality constraints are applied, every cell in the permutation is
        // in a 1-cycle; therefore mapping and aux are identical, because every cell is
        // its own distinguished element.
        Assembly {
            columns: p.columns.clone(),
            mapping: columns.clone(),
            aux: columns,
            sizes: vec![vec![1usize; n]; p.columns.len()],
        }
    }

    pub(crate) fn copy(
        &mut self,
        left_column: Column<Any>,
        left_row: usize,
        right_column: Column<Any>,
        right_row: usize,
    ) -> Result<(), Error> {
        let left_column = self
            .columns
            .iter()
            .position(|c| c == &left_column)
            .ok_or(Error::ColumnNotInPermutation(left_column))?;
        let right_column = self
            .columns
            .iter()
            .position(|c| c == &right_column)
            .ok_or(Error::ColumnNotInPermutation(right_column))?;

        // Check bounds
        if left_row >= self.mapping[left_column].len()
            || right_row >= self.mapping[right_column].len()
        {
            return Err(Error::BoundsFailure);
        }

        // See book/src/design/permutation.md for a description of this algorithm.

        let mut left_cycle = self.aux[left_column][left_row];
        let mut right_cycle = self.aux[right_column][right_row];

        // If left and right are in the same cycle, do nothing.
        if left_cycle == right_cycle {
            return Ok(());
        }

        if self.sizes[left_cycle.0][left_cycle.1] < self.sizes[right_cycle.0][right_cycle.1] {
            std::mem::swap(&mut left_cycle, &mut right_cycle);
        }

        // Merge the right cycle into the left one.
        self.sizes[left_cycle.0][left_cycle.1] += self.sizes[right_cycle.0][right_cycle.1];
        let mut i = right_cycle;
        loop {
            self.aux[i.0][i.1] = left_cycle;
            i = self.mapping[i.0][i.1];
            if i == right_cycle {
                break;
            }
        }

        let tmp = self.mapping[left_column][left_row];
        self.mapping[left_column][left_row] = self.mapping[right_column][right_row];
        self.mapping[right_column][right_row] = tmp;

        Ok(())
    }

    pub(crate) fn build_vk<C: CurveAffine>(
        self,
        params: &Params<C>,
        domain: &EvaluationDomain<C::Scalar>,
        p: &Argument,
    ) -> VerifyingKey<C> {
        // Compute [omega^0, omega^1, ..., omega^{params.n - 1}]
        let mut omega_powers = Vec::with_capacity(params.n as usize);
        {
            let mut cur = C::Scalar::one();
            for _ in 0..params.n {
                omega_powers.push(cur);
                cur *= &domain.get_omega();
            }
        }

        // Compute [omega_powers * \delta^0, omega_powers * \delta^1, ..., omega_powers * \delta^m]
        let mut deltaomega = Vec::with_capacity(p.columns.len());
        {
            let mut cur = C::Scalar::one();
            for _ in 0..p.columns.len() {
                let mut omega_powers = omega_powers.clone();
                for o in &mut omega_powers {
                    *o *= &cur;
                }

                deltaomega.push(omega_powers);

                cur *= &C::Scalar::DELTA;
            }
        }

        // Pre-compute commitments for the URS.
        let mut commitments = vec![];
        for i in 0..p.columns.len() {
            // Computes the permutation polynomial based on the permutation
            // description in the assembly.
            let mut permutation_poly = domain.empty_lagrange();
            for (j, p) in permutation_poly.iter_mut().enumerate() {
                let (permuted_i, permuted_j) = self.mapping[i][j];
                *p = deltaomega[permuted_i][permuted_j];
            }

            // Compute commitment to permutation polynomial
            commitments.push(
                params
                    .commit_lagrange(&permutation_poly, Blind::default())
                    .to_affine(),
            );
        }
        VerifyingKey { commitments }
    }

    pub(crate) fn build_pk<C: CurveAffine>(
        self,
        params: &Params<C>,
        domain: &EvaluationDomain<C::Scalar>,
        p: &Argument,
    ) -> ProvingKey<C> {
        // Compute [omega^0, omega^1, ..., omega^{params.n - 1}]
        let mut omega_powers = Vec::with_capacity(params.n as usize);
        {
            let mut cur = C::Scalar::one();
            for _ in 0..params.n {
                omega_powers.push(cur);
                cur *= &domain.get_omega();
            }
        }

        // Compute [omega_powers * \delta^0, omega_powers * \delta^1, ..., omega_powers * \delta^m]
        let mut deltaomega = Vec::with_capacity(p.columns.len());
        {
            let mut cur = C::Scalar::one();
            for _ in 0..p.columns.len() {
                let mut omega_powers = omega_powers.clone();
                for o in &mut omega_powers {
                    *o *= &cur;
                }

                deltaomega.push(omega_powers);

                cur *= &C::Scalar::DELTA;
            }
        }

        // Compute permutation polynomials, convert to coset form.
        let mut permutations = vec![];
        let mut polys = vec![];
        let mut cosets = vec![];
        for i in 0..p.columns.len() {
            // Computes the permutation polynomial based on the permutation
            // description in the assembly.
            let mut permutation_poly = domain.empty_lagrange();
            for (j, p) in permutation_poly.iter_mut().enumerate() {
                let (permuted_i, permuted_j) = self.mapping[i][j];
                *p = deltaomega[permuted_i][permuted_j];
            }

            // Store permutation polynomial and precompute its coset evaluation
            permutations.push(permutation_poly.clone());
            let poly = domain.lagrange_to_coeff(permutation_poly);
            polys.push(poly.clone());
            cosets.push(domain.coeff_to_extended(poly));
        }
        ProvingKey {
            permutations,
            polys,
            cosets,
        }
    }
}