threadpool/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A thread pool used to execute functions in parallel.
//!
//! Spawns a specified number of worker threads and replenishes the pool if any worker threads
//! panic.
//!
//! # Examples
//!
//! ## Synchronized with a channel
//!
//! Every thread sends one message over the channel, which then is collected with the `take()`.
//!
//! ```
//! use threadpool::ThreadPool;
//! use std::sync::mpsc::channel;
//!
//! let n_workers = 4;
//! let n_jobs = 8;
//! let pool = ThreadPool::new(n_workers);
//!
//! let (tx, rx) = channel();
//! for _ in 0..n_jobs {
//!     let tx = tx.clone();
//!     pool.execute(move|| {
//!         tx.send(1).expect("channel will be there waiting for the pool");
//!     });
//! }
//!
//! assert_eq!(rx.iter().take(n_jobs).fold(0, |a, b| a + b), 8);
//! ```
//!
//! ## Synchronized with a barrier
//!
//! Keep in mind, if a barrier synchronizes more jobs than you have workers in the pool,
//! you will end up with a [deadlock](https://en.wikipedia.org/wiki/Deadlock)
//! at the barrier which is [not considered unsafe](
//! https://doc.rust-lang.org/reference/behavior-not-considered-unsafe.html).
//!
//! ```
//! use threadpool::ThreadPool;
//! use std::sync::{Arc, Barrier};
//! use std::sync::atomic::{AtomicUsize, Ordering};
//!
//! // create at least as many workers as jobs or you will deadlock yourself
//! let n_workers = 42;
//! let n_jobs = 23;
//! let pool = ThreadPool::new(n_workers);
//! let an_atomic = Arc::new(AtomicUsize::new(0));
//!
//! assert!(n_jobs <= n_workers, "too many jobs, will deadlock");
//!
//! // create a barrier that waits for all jobs plus the starter thread
//! let barrier = Arc::new(Barrier::new(n_jobs + 1));
//! for _ in 0..n_jobs {
//!     let barrier = barrier.clone();
//!     let an_atomic = an_atomic.clone();
//!
//!     pool.execute(move|| {
//!         // do the heavy work
//!         an_atomic.fetch_add(1, Ordering::Relaxed);
//!
//!         // then wait for the other threads
//!         barrier.wait();
//!     });
//! }
//!
//! // wait for the threads to finish the work
//! barrier.wait();
//! assert_eq!(an_atomic.load(Ordering::SeqCst), /* n_jobs = */ 23);
//! ```

extern crate num_cpus;

use std::fmt;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc::{channel, Receiver, Sender};
use std::sync::{Arc, Condvar, Mutex};
use std::thread;

trait FnBox {
    fn call_box(self: Box<Self>);
}

impl<F: FnOnce()> FnBox for F {
    fn call_box(self: Box<F>) {
        (*self)()
    }
}

type Thunk<'a> = Box<FnBox + Send + 'a>;

struct Sentinel<'a> {
    shared_data: &'a Arc<ThreadPoolSharedData>,
    active: bool,
}

impl<'a> Sentinel<'a> {
    fn new(shared_data: &'a Arc<ThreadPoolSharedData>) -> Sentinel<'a> {
        Sentinel {
            shared_data: shared_data,
            active: true,
        }
    }

    /// Cancel and destroy this sentinel.
    fn cancel(mut self) {
        self.active = false;
    }
}

impl<'a> Drop for Sentinel<'a> {
    fn drop(&mut self) {
        if self.active {
            self.shared_data.active_count.fetch_sub(1, Ordering::SeqCst);
            if thread::panicking() {
                self.shared_data.panic_count.fetch_add(1, Ordering::SeqCst);
            }
            self.shared_data.no_work_notify_all();
            spawn_in_pool(self.shared_data.clone())
        }
    }
}

/// [`ThreadPool`] factory, which can be used in order to configure the properties of the
/// [`ThreadPool`].
///
/// The three configuration options available:
///
/// * `num_threads`: maximum number of threads that will be alive at any given moment by the built
///   [`ThreadPool`]
/// * `thread_name`: thread name for each of the threads spawned by the built [`ThreadPool`]
/// * `thread_stack_size`: stack size (in bytes) for each of the threads spawned by the built
///   [`ThreadPool`]
///
/// [`ThreadPool`]: struct.ThreadPool.html
///
/// # Examples
///
/// Build a [`ThreadPool`] that uses a maximum of eight threads simultaneously and each thread has
/// a 8 MB stack size:
///
/// ```
/// let pool = threadpool::Builder::new()
///     .num_threads(8)
///     .thread_stack_size(8_000_000)
///     .build();
/// ```
#[derive(Clone, Default)]
pub struct Builder {
    num_threads: Option<usize>,
    thread_name: Option<String>,
    thread_stack_size: Option<usize>,
}

impl Builder {
    /// Initiate a new [`Builder`].
    ///
    /// [`Builder`]: struct.Builder.html
    ///
    /// # Examples
    ///
    /// ```
    /// let builder = threadpool::Builder::new();
    /// ```
    pub fn new() -> Builder {
        Builder {
            num_threads: None,
            thread_name: None,
            thread_stack_size: None,
        }
    }

    /// Set the maximum number of worker-threads that will be alive at any given moment by the built
    /// [`ThreadPool`]. If not specified, defaults the number of threads to the number of CPUs.
    ///
    /// [`ThreadPool`]: struct.ThreadPool.html
    ///
    /// # Panics
    ///
    /// This method will panic if `num_threads` is 0.
    ///
    /// # Examples
    ///
    /// No more than eight threads will be alive simultaneously for this pool:
    ///
    /// ```
    /// use std::thread;
    ///
    /// let pool = threadpool::Builder::new()
    ///     .num_threads(8)
    ///     .build();
    ///
    /// for _ in 0..100 {
    ///     pool.execute(|| {
    ///         println!("Hello from a worker thread!")
    ///     })
    /// }
    /// ```
    pub fn num_threads(mut self, num_threads: usize) -> Builder {
        assert!(num_threads > 0);
        self.num_threads = Some(num_threads);
        self
    }

    /// Set the thread name for each of the threads spawned by the built [`ThreadPool`]. If not
    /// specified, threads spawned by the thread pool will be unnamed.
    ///
    /// [`ThreadPool`]: struct.ThreadPool.html
    ///
    /// # Examples
    ///
    /// Each thread spawned by this pool will have the name "foo":
    ///
    /// ```
    /// use std::thread;
    ///
    /// let pool = threadpool::Builder::new()
    ///     .thread_name("foo".into())
    ///     .build();
    ///
    /// for _ in 0..100 {
    ///     pool.execute(|| {
    ///         assert_eq!(thread::current().name(), Some("foo"));
    ///     })
    /// }
    /// ```
    pub fn thread_name(mut self, name: String) -> Builder {
        self.thread_name = Some(name);
        self
    }

    /// Set the stack size (in bytes) for each of the threads spawned by the built [`ThreadPool`].
    /// If not specified, threads spawned by the threadpool will have a stack size [as specified in
    /// the `std::thread` documentation][thread].
    ///
    /// [thread]: https://doc.rust-lang.org/nightly/std/thread/index.html#stack-size
    /// [`ThreadPool`]: struct.ThreadPool.html
    ///
    /// # Examples
    ///
    /// Each thread spawned by this pool will have a 4 MB stack:
    ///
    /// ```
    /// let pool = threadpool::Builder::new()
    ///     .thread_stack_size(4_000_000)
    ///     .build();
    ///
    /// for _ in 0..100 {
    ///     pool.execute(|| {
    ///         println!("This thread has a 4 MB stack size!");
    ///     })
    /// }
    /// ```
    pub fn thread_stack_size(mut self, size: usize) -> Builder {
        self.thread_stack_size = Some(size);
        self
    }

    /// Finalize the [`Builder`] and build the [`ThreadPool`].
    ///
    /// [`Builder`]: struct.Builder.html
    /// [`ThreadPool`]: struct.ThreadPool.html
    ///
    /// # Examples
    ///
    /// ```
    /// let pool = threadpool::Builder::new()
    ///     .num_threads(8)
    ///     .thread_stack_size(4_000_000)
    ///     .build();
    /// ```
    pub fn build(self) -> ThreadPool {
        let (tx, rx) = channel::<Thunk<'static>>();

        let num_threads = self.num_threads.unwrap_or_else(num_cpus::get);

        let shared_data = Arc::new(ThreadPoolSharedData {
            name: self.thread_name,
            job_receiver: Mutex::new(rx),
            empty_condvar: Condvar::new(),
            empty_trigger: Mutex::new(()),
            join_generation: AtomicUsize::new(0),
            queued_count: AtomicUsize::new(0),
            active_count: AtomicUsize::new(0),
            max_thread_count: AtomicUsize::new(num_threads),
            panic_count: AtomicUsize::new(0),
            stack_size: self.thread_stack_size,
        });

        // Threadpool threads
        for _ in 0..num_threads {
            spawn_in_pool(shared_data.clone());
        }

        ThreadPool {
            jobs: tx,
            shared_data: shared_data,
        }
    }
}

struct ThreadPoolSharedData {
    name: Option<String>,
    job_receiver: Mutex<Receiver<Thunk<'static>>>,
    empty_trigger: Mutex<()>,
    empty_condvar: Condvar,
    join_generation: AtomicUsize,
    queued_count: AtomicUsize,
    active_count: AtomicUsize,
    max_thread_count: AtomicUsize,
    panic_count: AtomicUsize,
    stack_size: Option<usize>,
}

impl ThreadPoolSharedData {
    fn has_work(&self) -> bool {
        self.queued_count.load(Ordering::SeqCst) > 0 || self.active_count.load(Ordering::SeqCst) > 0
    }

    /// Notify all observers joining this pool if there is no more work to do.
    fn no_work_notify_all(&self) {
        if !self.has_work() {
            *self
                .empty_trigger
                .lock()
                .expect("Unable to notify all joining threads");
            self.empty_condvar.notify_all();
        }
    }
}

/// Abstraction of a thread pool for basic parallelism.
pub struct ThreadPool {
    // How the threadpool communicates with subthreads.
    //
    // This is the only such Sender, so when it is dropped all subthreads will
    // quit.
    jobs: Sender<Thunk<'static>>,
    shared_data: Arc<ThreadPoolSharedData>,
}

impl ThreadPool {
    /// Creates a new thread pool capable of executing `num_threads` number of jobs concurrently.
    ///
    /// # Panics
    ///
    /// This function will panic if `num_threads` is 0.
    ///
    /// # Examples
    ///
    /// Create a new thread pool capable of executing four jobs concurrently:
    ///
    /// ```
    /// use threadpool::ThreadPool;
    ///
    /// let pool = ThreadPool::new(4);
    /// ```
    pub fn new(num_threads: usize) -> ThreadPool {
        Builder::new().num_threads(num_threads).build()
    }

    /// Creates a new thread pool capable of executing `num_threads` number of jobs concurrently.
    /// Each thread will have the [name][thread name] `name`.
    ///
    /// # Panics
    ///
    /// This function will panic if `num_threads` is 0.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::thread;
    /// use threadpool::ThreadPool;
    ///
    /// let pool = ThreadPool::with_name("worker".into(), 2);
    /// for _ in 0..2 {
    ///     pool.execute(|| {
    ///         assert_eq!(
    ///             thread::current().name(),
    ///             Some("worker")
    ///         );
    ///     });
    /// }
    /// pool.join();
    /// ```
    ///
    /// [thread name]: https://doc.rust-lang.org/std/thread/struct.Thread.html#method.name
    pub fn with_name(name: String, num_threads: usize) -> ThreadPool {
        Builder::new()
            .num_threads(num_threads)
            .thread_name(name)
            .build()
    }

    /// **Deprecated: Use [`ThreadPool::with_name`](#method.with_name)**
    #[inline(always)]
    #[deprecated(since = "1.4.0", note = "use ThreadPool::with_name")]
    pub fn new_with_name(name: String, num_threads: usize) -> ThreadPool {
        Self::with_name(name, num_threads)
    }

    /// Executes the function `job` on a thread in the pool.
    ///
    /// # Examples
    ///
    /// Execute four jobs on a thread pool that can run two jobs concurrently:
    ///
    /// ```
    /// use threadpool::ThreadPool;
    ///
    /// let pool = ThreadPool::new(2);
    /// pool.execute(|| println!("hello"));
    /// pool.execute(|| println!("world"));
    /// pool.execute(|| println!("foo"));
    /// pool.execute(|| println!("bar"));
    /// pool.join();
    /// ```
    pub fn execute<F>(&self, job: F)
    where
        F: FnOnce() + Send + 'static,
    {
        self.shared_data.queued_count.fetch_add(1, Ordering::SeqCst);
        self.jobs
            .send(Box::new(job))
            .expect("ThreadPool::execute unable to send job into queue.");
    }

    /// Returns the number of jobs waiting to executed in the pool.
    ///
    /// # Examples
    ///
    /// ```
    /// use threadpool::ThreadPool;
    /// use std::time::Duration;
    /// use std::thread::sleep;
    ///
    /// let pool = ThreadPool::new(2);
    /// for _ in 0..10 {
    ///     pool.execute(|| {
    ///         sleep(Duration::from_secs(100));
    ///     });
    /// }
    ///
    /// sleep(Duration::from_secs(1)); // wait for threads to start
    /// assert_eq!(8, pool.queued_count());
    /// ```
    pub fn queued_count(&self) -> usize {
        self.shared_data.queued_count.load(Ordering::Relaxed)
    }

    /// Returns the number of currently active threads.
    ///
    /// # Examples
    ///
    /// ```
    /// use threadpool::ThreadPool;
    /// use std::time::Duration;
    /// use std::thread::sleep;
    ///
    /// let pool = ThreadPool::new(4);
    /// for _ in 0..10 {
    ///     pool.execute(move || {
    ///         sleep(Duration::from_secs(100));
    ///     });
    /// }
    ///
    /// sleep(Duration::from_secs(1)); // wait for threads to start
    /// assert_eq!(4, pool.active_count());
    /// ```
    pub fn active_count(&self) -> usize {
        self.shared_data.active_count.load(Ordering::SeqCst)
    }

    /// Returns the maximum number of threads the pool will execute concurrently.
    ///
    /// # Examples
    ///
    /// ```
    /// use threadpool::ThreadPool;
    ///
    /// let mut pool = ThreadPool::new(4);
    /// assert_eq!(4, pool.max_count());
    ///
    /// pool.set_num_threads(8);
    /// assert_eq!(8, pool.max_count());
    /// ```
    pub fn max_count(&self) -> usize {
        self.shared_data.max_thread_count.load(Ordering::Relaxed)
    }

    /// Returns the number of panicked threads over the lifetime of the pool.
    ///
    /// # Examples
    ///
    /// ```
    /// use threadpool::ThreadPool;
    ///
    /// let pool = ThreadPool::new(4);
    /// for n in 0..10 {
    ///     pool.execute(move || {
    ///         // simulate a panic
    ///         if n % 2 == 0 {
    ///             panic!()
    ///         }
    ///     });
    /// }
    /// pool.join();
    ///
    /// assert_eq!(5, pool.panic_count());
    /// ```
    pub fn panic_count(&self) -> usize {
        self.shared_data.panic_count.load(Ordering::Relaxed)
    }

    /// **Deprecated: Use [`ThreadPool::set_num_threads`](#method.set_num_threads)**
    #[deprecated(since = "1.3.0", note = "use ThreadPool::set_num_threads")]
    pub fn set_threads(&mut self, num_threads: usize) {
        self.set_num_threads(num_threads)
    }

    /// Sets the number of worker-threads to use as `num_threads`.
    /// Can be used to change the threadpool size during runtime.
    /// Will not abort already running or waiting threads.
    ///
    /// # Panics
    ///
    /// This function will panic if `num_threads` is 0.
    ///
    /// # Examples
    ///
    /// ```
    /// use threadpool::ThreadPool;
    /// use std::time::Duration;
    /// use std::thread::sleep;
    ///
    /// let mut pool = ThreadPool::new(4);
    /// for _ in 0..10 {
    ///     pool.execute(move || {
    ///         sleep(Duration::from_secs(100));
    ///     });
    /// }
    ///
    /// sleep(Duration::from_secs(1)); // wait for threads to start
    /// assert_eq!(4, pool.active_count());
    /// assert_eq!(6, pool.queued_count());
    ///
    /// // Increase thread capacity of the pool
    /// pool.set_num_threads(8);
    ///
    /// sleep(Duration::from_secs(1)); // wait for new threads to start
    /// assert_eq!(8, pool.active_count());
    /// assert_eq!(2, pool.queued_count());
    ///
    /// // Decrease thread capacity of the pool
    /// // No active threads are killed
    /// pool.set_num_threads(4);
    ///
    /// assert_eq!(8, pool.active_count());
    /// assert_eq!(2, pool.queued_count());
    /// ```
    pub fn set_num_threads(&mut self, num_threads: usize) {
        assert!(num_threads >= 1);
        let prev_num_threads = self
            .shared_data
            .max_thread_count
            .swap(num_threads, Ordering::Release);
        if let Some(num_spawn) = num_threads.checked_sub(prev_num_threads) {
            // Spawn new threads
            for _ in 0..num_spawn {
                spawn_in_pool(self.shared_data.clone());
            }
        }
    }

    /// Block the current thread until all jobs in the pool have been executed.
    ///
    /// Calling `join` on an empty pool will cause an immediate return.
    /// `join` may be called from multiple threads concurrently.
    /// A `join` is an atomic point in time. All threads joining before the join
    /// event will exit together even if the pool is processing new jobs by the
    /// time they get scheduled.
    ///
    /// Calling `join` from a thread within the pool will cause a deadlock. This
    /// behavior is considered safe.
    ///
    /// # Examples
    ///
    /// ```
    /// use threadpool::ThreadPool;
    /// use std::sync::Arc;
    /// use std::sync::atomic::{AtomicUsize, Ordering};
    ///
    /// let pool = ThreadPool::new(8);
    /// let test_count = Arc::new(AtomicUsize::new(0));
    ///
    /// for _ in 0..42 {
    ///     let test_count = test_count.clone();
    ///     pool.execute(move || {
    ///         test_count.fetch_add(1, Ordering::Relaxed);
    ///     });
    /// }
    ///
    /// pool.join();
    /// assert_eq!(42, test_count.load(Ordering::Relaxed));
    /// ```
    pub fn join(&self) {
        // fast path requires no mutex
        if self.shared_data.has_work() == false {
            return ();
        }

        let generation = self.shared_data.join_generation.load(Ordering::SeqCst);
        let mut lock = self.shared_data.empty_trigger.lock().unwrap();

        while generation == self.shared_data.join_generation.load(Ordering::Relaxed)
            && self.shared_data.has_work()
        {
            lock = self.shared_data.empty_condvar.wait(lock).unwrap();
        }

        // increase generation if we are the first thread to come out of the loop
        self.shared_data.join_generation.compare_and_swap(
            generation,
            generation.wrapping_add(1),
            Ordering::SeqCst,
        );
    }
}

impl Clone for ThreadPool {
    /// Cloning a pool will create a new handle to the pool.
    /// The behavior is similar to [Arc](https://doc.rust-lang.org/stable/std/sync/struct.Arc.html).
    ///
    /// We could for example submit jobs from multiple threads concurrently.
    ///
    /// ```
    /// use threadpool::ThreadPool;
    /// use std::thread;
    /// use std::sync::mpsc::channel;
    ///
    /// let pool = ThreadPool::with_name("clone example".into(), 2);
    ///
    /// let results = (0..2)
    ///     .map(|i| {
    ///         let pool = pool.clone();
    ///         thread::spawn(move || {
    ///             let (tx, rx) = channel();
    ///             for i in 1..12 {
    ///                 let tx = tx.clone();
    ///                 pool.execute(move || {
    ///                     tx.send(i).expect("channel will be waiting");
    ///                 });
    ///             }
    ///             drop(tx);
    ///             if i == 0 {
    ///                 rx.iter().fold(0, |accumulator, element| accumulator + element)
    ///             } else {
    ///                 rx.iter().fold(1, |accumulator, element| accumulator * element)
    ///             }
    ///         })
    ///     })
    ///     .map(|join_handle| join_handle.join().expect("collect results from threads"))
    ///     .collect::<Vec<usize>>();
    ///
    /// assert_eq!(vec![66, 39916800], results);
    /// ```
    fn clone(&self) -> ThreadPool {
        ThreadPool {
            jobs: self.jobs.clone(),
            shared_data: self.shared_data.clone(),
        }
    }
}

/// Create a thread pool with one thread per CPU.
/// On machines with hyperthreading,
/// this will create one thread per hyperthread.
impl Default for ThreadPool {
    fn default() -> Self {
        ThreadPool::new(num_cpus::get())
    }
}

impl fmt::Debug for ThreadPool {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("ThreadPool")
            .field("name", &self.shared_data.name)
            .field("queued_count", &self.queued_count())
            .field("active_count", &self.active_count())
            .field("max_count", &self.max_count())
            .finish()
    }
}

impl PartialEq for ThreadPool {
    /// Check if you are working with the same pool
    ///
    /// ```
    /// use threadpool::ThreadPool;
    ///
    /// let a = ThreadPool::new(2);
    /// let b = ThreadPool::new(2);
    ///
    /// assert_eq!(a, a);
    /// assert_eq!(b, b);
    ///
    /// # // TODO: change this to assert_ne in the future
    /// assert!(a != b);
    /// assert!(b != a);
    /// ```
    fn eq(&self, other: &ThreadPool) -> bool {
        let a: &ThreadPoolSharedData = &*self.shared_data;
        let b: &ThreadPoolSharedData = &*other.shared_data;
        a as *const ThreadPoolSharedData == b as *const ThreadPoolSharedData
        // with rust 1.17 and late:
        // Arc::ptr_eq(&self.shared_data, &other.shared_data)
    }
}
impl Eq for ThreadPool {}

fn spawn_in_pool(shared_data: Arc<ThreadPoolSharedData>) {
    let mut builder = thread::Builder::new();
    if let Some(ref name) = shared_data.name {
        builder = builder.name(name.clone());
    }
    if let Some(ref stack_size) = shared_data.stack_size {
        builder = builder.stack_size(stack_size.to_owned());
    }
    builder
        .spawn(move || {
            // Will spawn a new thread on panic unless it is cancelled.
            let sentinel = Sentinel::new(&shared_data);

            loop {
                // Shutdown this thread if the pool has become smaller
                let thread_counter_val = shared_data.active_count.load(Ordering::Acquire);
                let max_thread_count_val = shared_data.max_thread_count.load(Ordering::Relaxed);
                if thread_counter_val >= max_thread_count_val {
                    break;
                }
                let message = {
                    // Only lock jobs for the time it takes
                    // to get a job, not run it.
                    let lock = shared_data
                        .job_receiver
                        .lock()
                        .expect("Worker thread unable to lock job_receiver");
                    lock.recv()
                };

                let job = match message {
                    Ok(job) => job,
                    // The ThreadPool was dropped.
                    Err(..) => break,
                };
                // Do not allow IR around the job execution
                shared_data.active_count.fetch_add(1, Ordering::SeqCst);
                shared_data.queued_count.fetch_sub(1, Ordering::SeqCst);

                job.call_box();

                shared_data.active_count.fetch_sub(1, Ordering::SeqCst);
                shared_data.no_work_notify_all();
            }

            sentinel.cancel();
        })
        .unwrap();
}

#[cfg(test)]
mod test {
    use super::{Builder, ThreadPool};
    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::mpsc::{channel, sync_channel};
    use std::sync::{Arc, Barrier};
    use std::thread::{self, sleep};
    use std::time::Duration;

    const TEST_TASKS: usize = 4;

    #[test]
    fn test_set_num_threads_increasing() {
        let new_thread_amount = TEST_TASKS + 8;
        let mut pool = ThreadPool::new(TEST_TASKS);
        for _ in 0..TEST_TASKS {
            pool.execute(move || sleep(Duration::from_secs(23)));
        }
        sleep(Duration::from_secs(1));
        assert_eq!(pool.active_count(), TEST_TASKS);

        pool.set_num_threads(new_thread_amount);

        for _ in 0..(new_thread_amount - TEST_TASKS) {
            pool.execute(move || sleep(Duration::from_secs(23)));
        }
        sleep(Duration::from_secs(1));
        assert_eq!(pool.active_count(), new_thread_amount);

        pool.join();
    }

    #[test]
    fn test_set_num_threads_decreasing() {
        let new_thread_amount = 2;
        let mut pool = ThreadPool::new(TEST_TASKS);
        for _ in 0..TEST_TASKS {
            pool.execute(move || {
                assert_eq!(1, 1);
            });
        }
        pool.set_num_threads(new_thread_amount);
        for _ in 0..new_thread_amount {
            pool.execute(move || sleep(Duration::from_secs(23)));
        }
        sleep(Duration::from_secs(1));
        assert_eq!(pool.active_count(), new_thread_amount);

        pool.join();
    }

    #[test]
    fn test_active_count() {
        let pool = ThreadPool::new(TEST_TASKS);
        for _ in 0..2 * TEST_TASKS {
            pool.execute(move || loop {
                sleep(Duration::from_secs(10))
            });
        }
        sleep(Duration::from_secs(1));
        let active_count = pool.active_count();
        assert_eq!(active_count, TEST_TASKS);
        let initialized_count = pool.max_count();
        assert_eq!(initialized_count, TEST_TASKS);
    }

    #[test]
    fn test_works() {
        let pool = ThreadPool::new(TEST_TASKS);

        let (tx, rx) = channel();
        for _ in 0..TEST_TASKS {
            let tx = tx.clone();
            pool.execute(move || {
                tx.send(1).unwrap();
            });
        }

        assert_eq!(rx.iter().take(TEST_TASKS).fold(0, |a, b| a + b), TEST_TASKS);
    }

    #[test]
    #[should_panic]
    fn test_zero_tasks_panic() {
        ThreadPool::new(0);
    }

    #[test]
    fn test_recovery_from_subtask_panic() {
        let pool = ThreadPool::new(TEST_TASKS);

        // Panic all the existing threads.
        for _ in 0..TEST_TASKS {
            pool.execute(move || panic!("Ignore this panic, it must!"));
        }
        pool.join();

        assert_eq!(pool.panic_count(), TEST_TASKS);

        // Ensure new threads were spawned to compensate.
        let (tx, rx) = channel();
        for _ in 0..TEST_TASKS {
            let tx = tx.clone();
            pool.execute(move || {
                tx.send(1).unwrap();
            });
        }

        assert_eq!(rx.iter().take(TEST_TASKS).fold(0, |a, b| a + b), TEST_TASKS);
    }

    #[test]
    fn test_should_not_panic_on_drop_if_subtasks_panic_after_drop() {
        let pool = ThreadPool::new(TEST_TASKS);
        let waiter = Arc::new(Barrier::new(TEST_TASKS + 1));

        // Panic all the existing threads in a bit.
        for _ in 0..TEST_TASKS {
            let waiter = waiter.clone();
            pool.execute(move || {
                waiter.wait();
                panic!("Ignore this panic, it should!");
            });
        }

        drop(pool);

        // Kick off the failure.
        waiter.wait();
    }

    #[test]
    fn test_massive_task_creation() {
        let test_tasks = 4_200_000;

        let pool = ThreadPool::new(TEST_TASKS);
        let b0 = Arc::new(Barrier::new(TEST_TASKS + 1));
        let b1 = Arc::new(Barrier::new(TEST_TASKS + 1));

        let (tx, rx) = channel();

        for i in 0..test_tasks {
            let tx = tx.clone();
            let (b0, b1) = (b0.clone(), b1.clone());

            pool.execute(move || {
                // Wait until the pool has been filled once.
                if i < TEST_TASKS {
                    b0.wait();
                    // wait so the pool can be measured
                    b1.wait();
                }

                tx.send(1).is_ok();
            });
        }

        b0.wait();
        assert_eq!(pool.active_count(), TEST_TASKS);
        b1.wait();

        assert_eq!(rx.iter().take(test_tasks).fold(0, |a, b| a + b), test_tasks);
        pool.join();

        let atomic_active_count = pool.active_count();
        assert!(
            atomic_active_count == 0,
            "atomic_active_count: {}",
            atomic_active_count
        );
    }

    #[test]
    fn test_shrink() {
        let test_tasks_begin = TEST_TASKS + 2;

        let mut pool = ThreadPool::new(test_tasks_begin);
        let b0 = Arc::new(Barrier::new(test_tasks_begin + 1));
        let b1 = Arc::new(Barrier::new(test_tasks_begin + 1));

        for _ in 0..test_tasks_begin {
            let (b0, b1) = (b0.clone(), b1.clone());
            pool.execute(move || {
                b0.wait();
                b1.wait();
            });
        }

        let b2 = Arc::new(Barrier::new(TEST_TASKS + 1));
        let b3 = Arc::new(Barrier::new(TEST_TASKS + 1));

        for _ in 0..TEST_TASKS {
            let (b2, b3) = (b2.clone(), b3.clone());
            pool.execute(move || {
                b2.wait();
                b3.wait();
            });
        }

        b0.wait();
        pool.set_num_threads(TEST_TASKS);

        assert_eq!(pool.active_count(), test_tasks_begin);
        b1.wait();

        b2.wait();
        assert_eq!(pool.active_count(), TEST_TASKS);
        b3.wait();
    }

    #[test]
    fn test_name() {
        let name = "test";
        let mut pool = ThreadPool::with_name(name.to_owned(), 2);
        let (tx, rx) = sync_channel(0);

        // initial thread should share the name "test"
        for _ in 0..2 {
            let tx = tx.clone();
            pool.execute(move || {
                let name = thread::current().name().unwrap().to_owned();
                tx.send(name).unwrap();
            });
        }

        // new spawn thread should share the name "test" too.
        pool.set_num_threads(3);
        let tx_clone = tx.clone();
        pool.execute(move || {
            let name = thread::current().name().unwrap().to_owned();
            tx_clone.send(name).unwrap();
            panic!();
        });

        // recover thread should share the name "test" too.
        pool.execute(move || {
            let name = thread::current().name().unwrap().to_owned();
            tx.send(name).unwrap();
        });

        for thread_name in rx.iter().take(4) {
            assert_eq!(name, thread_name);
        }
    }

    #[test]
    fn test_debug() {
        let pool = ThreadPool::new(4);
        let debug = format!("{:?}", pool);
        assert_eq!(
            debug,
            "ThreadPool { name: None, queued_count: 0, active_count: 0, max_count: 4 }"
        );

        let pool = ThreadPool::with_name("hello".into(), 4);
        let debug = format!("{:?}", pool);
        assert_eq!(
            debug,
            "ThreadPool { name: Some(\"hello\"), queued_count: 0, active_count: 0, max_count: 4 }"
        );

        let pool = ThreadPool::new(4);
        pool.execute(move || sleep(Duration::from_secs(5)));
        sleep(Duration::from_secs(1));
        let debug = format!("{:?}", pool);
        assert_eq!(
            debug,
            "ThreadPool { name: None, queued_count: 0, active_count: 1, max_count: 4 }"
        );
    }

    #[test]
    fn test_repeate_join() {
        let pool = ThreadPool::with_name("repeate join test".into(), 8);
        let test_count = Arc::new(AtomicUsize::new(0));

        for _ in 0..42 {
            let test_count = test_count.clone();
            pool.execute(move || {
                sleep(Duration::from_secs(2));
                test_count.fetch_add(1, Ordering::Release);
            });
        }

        println!("{:?}", pool);
        pool.join();
        assert_eq!(42, test_count.load(Ordering::Acquire));

        for _ in 0..42 {
            let test_count = test_count.clone();
            pool.execute(move || {
                sleep(Duration::from_secs(2));
                test_count.fetch_add(1, Ordering::Relaxed);
            });
        }
        pool.join();
        assert_eq!(84, test_count.load(Ordering::Relaxed));
    }

    #[test]
    fn test_multi_join() {
        use std::sync::mpsc::TryRecvError::*;

        // Toggle the following lines to debug the deadlock
        fn error(_s: String) {
            //use ::std::io::Write;
            //let stderr = ::std::io::stderr();
            //let mut stderr = stderr.lock();
            //stderr.write(&_s.as_bytes()).is_ok();
        }

        let pool0 = ThreadPool::with_name("multi join pool0".into(), 4);
        let pool1 = ThreadPool::with_name("multi join pool1".into(), 4);
        let (tx, rx) = channel();

        for i in 0..8 {
            let pool1 = pool1.clone();
            let pool0_ = pool0.clone();
            let tx = tx.clone();
            pool0.execute(move || {
                pool1.execute(move || {
                    error(format!("p1: {} -=- {:?}\n", i, pool0_));
                    pool0_.join();
                    error(format!("p1: send({})\n", i));
                    tx.send(i).expect("send i from pool1 -> main");
                });
                error(format!("p0: {}\n", i));
            });
        }
        drop(tx);

        assert_eq!(rx.try_recv(), Err(Empty));
        error(format!("{:?}\n{:?}\n", pool0, pool1));
        pool0.join();
        error(format!("pool0.join() complete =-= {:?}", pool1));
        pool1.join();
        error("pool1.join() complete\n".into());
        assert_eq!(
            rx.iter().fold(0, |acc, i| acc + i),
            0 + 1 + 2 + 3 + 4 + 5 + 6 + 7
        );
    }

    #[test]
    fn test_empty_pool() {
        // Joining an empty pool must return imminently
        let pool = ThreadPool::new(4);

        pool.join();

        assert!(true);
    }

    #[test]
    fn test_no_fun_or_joy() {
        // What happens when you keep adding jobs after a join

        fn sleepy_function() {
            sleep(Duration::from_secs(6));
        }

        let pool = ThreadPool::with_name("no fun or joy".into(), 8);

        pool.execute(sleepy_function);

        let p_t = pool.clone();
        thread::spawn(move || {
            (0..23).map(|_| p_t.execute(sleepy_function)).count();
        });

        pool.join();
    }

    #[test]
    fn test_clone() {
        let pool = ThreadPool::with_name("clone example".into(), 2);

        // This batch of jobs will occupy the pool for some time
        for _ in 0..6 {
            pool.execute(move || {
                sleep(Duration::from_secs(2));
            });
        }

        // The following jobs will be inserted into the pool in a random fashion
        let t0 = {
            let pool = pool.clone();
            thread::spawn(move || {
                // wait for the first batch of tasks to finish
                pool.join();

                let (tx, rx) = channel();
                for i in 0..42 {
                    let tx = tx.clone();
                    pool.execute(move || {
                        tx.send(i).expect("channel will be waiting");
                    });
                }
                drop(tx);
                rx.iter()
                    .fold(0, |accumulator, element| accumulator + element)
            })
        };
        let t1 = {
            let pool = pool.clone();
            thread::spawn(move || {
                // wait for the first batch of tasks to finish
                pool.join();

                let (tx, rx) = channel();
                for i in 1..12 {
                    let tx = tx.clone();
                    pool.execute(move || {
                        tx.send(i).expect("channel will be waiting");
                    });
                }
                drop(tx);
                rx.iter()
                    .fold(1, |accumulator, element| accumulator * element)
            })
        };

        assert_eq!(
            861,
            t0.join()
                .expect("thread 0 will return after calculating additions",)
        );
        assert_eq!(
            39916800,
            t1.join()
                .expect("thread 1 will return after calculating multiplications",)
        );
    }

    #[test]
    fn test_sync_shared_data() {
        fn assert_sync<T: Sync>() {}
        assert_sync::<super::ThreadPoolSharedData>();
    }

    #[test]
    fn test_send_shared_data() {
        fn assert_send<T: Send>() {}
        assert_send::<super::ThreadPoolSharedData>();
    }

    #[test]
    fn test_send() {
        fn assert_send<T: Send>() {}
        assert_send::<ThreadPool>();
    }

    #[test]
    fn test_cloned_eq() {
        let a = ThreadPool::new(2);

        assert_eq!(a, a.clone());
    }

    #[test]
    /// The scenario is joining threads should not be stuck once their wave
    /// of joins has completed. So once one thread joining on a pool has
    /// succeded other threads joining on the same pool must get out even if
    /// the thread is used for other jobs while the first group is finishing
    /// their join
    ///
    /// In this example this means the waiting threads will exit the join in
    /// groups of four because the waiter pool has four workers.
    fn test_join_wavesurfer() {
        let n_cycles = 4;
        let n_workers = 4;
        let (tx, rx) = channel();
        let builder = Builder::new()
            .num_threads(n_workers)
            .thread_name("join wavesurfer".into());
        let p_waiter = builder.clone().build();
        let p_clock = builder.build();

        let barrier = Arc::new(Barrier::new(3));
        let wave_clock = Arc::new(AtomicUsize::new(0));
        let clock_thread = {
            let barrier = barrier.clone();
            let wave_clock = wave_clock.clone();
            thread::spawn(move || {
                barrier.wait();
                for wave_num in 0..n_cycles {
                    wave_clock.store(wave_num, Ordering::SeqCst);
                    sleep(Duration::from_secs(1));
                }
            })
        };

        {
            let barrier = barrier.clone();
            p_clock.execute(move || {
                barrier.wait();
                // this sleep is for stabilisation on weaker platforms
                sleep(Duration::from_millis(100));
            });
        }

        // prepare three waves of jobs
        for i in 0..3 * n_workers {
            let p_clock = p_clock.clone();
            let tx = tx.clone();
            let wave_clock = wave_clock.clone();
            p_waiter.execute(move || {
                let now = wave_clock.load(Ordering::SeqCst);
                p_clock.join();
                // submit jobs for the second wave
                p_clock.execute(|| sleep(Duration::from_secs(1)));
                let clock = wave_clock.load(Ordering::SeqCst);
                tx.send((now, clock, i)).unwrap();
            });
        }
        println!("all scheduled at {}", wave_clock.load(Ordering::SeqCst));
        barrier.wait();

        p_clock.join();
        //p_waiter.join();

        drop(tx);
        let mut hist = vec![0; n_cycles];
        let mut data = vec![];
        for (now, after, i) in rx.iter() {
            let mut dur = after - now;
            if dur >= n_cycles - 1 {
                dur = n_cycles - 1;
            }
            hist[dur] += 1;

            data.push((now, after, i));
        }
        for (i, n) in hist.iter().enumerate() {
            println!(
                "\t{}: {} {}",
                i,
                n,
                &*(0..*n).fold("".to_owned(), |s, _| s + "*")
            );
        }
        assert!(data.iter().all(|&(cycle, stop, i)| if i < n_workers {
            cycle == stop
        } else {
            cycle < stop
        }));

        clock_thread.join().unwrap();
    }
}