halo2_base/poseidon/hasher/state.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
use std::iter;
use itertools::Itertools;
use crate::{
gates::GateInstructions,
poseidon::hasher::{mds::SparseMDSMatrix, spec::OptimizedPoseidonSpec},
safe_types::SafeBool,
utils::ScalarField,
AssignedValue, Context,
QuantumCell::{Constant, Existing},
};
#[derive(Clone, Debug)]
pub(crate) struct PoseidonState<F: ScalarField, const T: usize, const RATE: usize> {
pub(crate) s: [AssignedValue<F>; T],
}
impl<F: ScalarField, const T: usize, const RATE: usize> PoseidonState<F, T, RATE> {
pub fn default(ctx: &mut Context<F>) -> Self {
let mut default_state = [F::ZERO; T];
// from Section 4.2 of https://eprint.iacr.org/2019/458.pdf
// • Variable-Input-Length Hashing. The capacity value is 2^64 + (o−1) where o the output length.
// for our transcript use cases, o = 1
default_state[0] = F::from_u128(1u128 << 64);
Self { s: default_state.map(|f| ctx.load_constant(f)) }
}
/// Perform permutation on this state.
///
/// ATTETION: inputs.len() needs to be fixed at compile time.
/// Assume len <= inputs.len().
/// `inputs` is right padded.
/// If `len` is `None`, treat `inputs` as a fixed length array.
pub fn permutation(
&mut self,
ctx: &mut Context<F>,
gate: &impl GateInstructions<F>,
inputs: &[AssignedValue<F>],
len: Option<AssignedValue<F>>,
spec: &OptimizedPoseidonSpec<F, T, RATE>,
) {
let r_f = spec.r_f / 2;
let mds = &spec.mds_matrices.mds.0;
let pre_sparse_mds = &spec.mds_matrices.pre_sparse_mds.0;
let sparse_matrices = &spec.mds_matrices.sparse_matrices;
// First half of the full round
let constants = &spec.constants.start;
if let Some(len) = len {
// Note: this doesn't mean `padded_inputs` is 0 padded because there is no constraints on `inputs[len..]`
let padded_inputs: [AssignedValue<F>; RATE] =
core::array::from_fn(
|i| if i < inputs.len() { inputs[i] } else { ctx.load_zero() },
);
self.absorb_var_len_with_pre_constants(ctx, gate, padded_inputs, len, &constants[0]);
} else {
self.absorb_with_pre_constants(ctx, gate, inputs, &constants[0]);
}
for constants in constants.iter().skip(1).take(r_f - 1) {
self.sbox_full(ctx, gate, constants);
self.apply_mds(ctx, gate, mds);
}
self.sbox_full(ctx, gate, constants.last().unwrap());
self.apply_mds(ctx, gate, pre_sparse_mds);
// Partial rounds
let constants = &spec.constants.partial;
for (constant, sparse_mds) in constants.iter().zip(sparse_matrices.iter()) {
self.sbox_part(ctx, gate, constant);
self.apply_sparse_mds(ctx, gate, sparse_mds);
}
// Second half of the full rounds
let constants = &spec.constants.end;
for constants in constants.iter() {
self.sbox_full(ctx, gate, constants);
self.apply_mds(ctx, gate, mds);
}
self.sbox_full(ctx, gate, &[F::ZERO; T]);
self.apply_mds(ctx, gate, mds);
}
/// Constrains and set self to a specific state if `selector` is true.
pub fn select(
&mut self,
ctx: &mut Context<F>,
gate: &impl GateInstructions<F>,
selector: SafeBool<F>,
set_to: &Self,
) {
for i in 0..T {
self.s[i] = gate.select(ctx, set_to.s[i], self.s[i], *selector.as_ref());
}
}
fn x_power5_with_constant(
ctx: &mut Context<F>,
gate: &impl GateInstructions<F>,
x: AssignedValue<F>,
constant: &F,
) -> AssignedValue<F> {
let x2 = gate.mul(ctx, x, x);
let x4 = gate.mul(ctx, x2, x2);
gate.mul_add(ctx, x, x4, Constant(*constant))
}
fn sbox_full(
&mut self,
ctx: &mut Context<F>,
gate: &impl GateInstructions<F>,
constants: &[F; T],
) {
for (x, constant) in self.s.iter_mut().zip(constants.iter()) {
*x = Self::x_power5_with_constant(ctx, gate, *x, constant);
}
}
fn sbox_part(&mut self, ctx: &mut Context<F>, gate: &impl GateInstructions<F>, constant: &F) {
let x = &mut self.s[0];
*x = Self::x_power5_with_constant(ctx, gate, *x, constant);
}
fn absorb_with_pre_constants(
&mut self,
ctx: &mut Context<F>,
gate: &impl GateInstructions<F>,
inputs: &[AssignedValue<F>],
pre_constants: &[F; T],
) {
assert!(inputs.len() < T);
// Explanation of what's going on: before each round of the poseidon permutation,
// two things have to be added to the state: inputs (the absorbed elements) and
// preconstants. Imagine the state as a list of T elements, the first of which is
// the capacity: |--cap--|--el1--|--el2--|--elR--|
// - A preconstant is added to each of all T elements (which is different for each)
// - The inputs are added to all elements starting from el1 (so, not to the capacity),
// to as many elements as inputs are available.
// - To the first element for which no input is left (if any), an extra 1 is added.
// adding preconstant to the distinguished capacity element (only one)
self.s[0] = gate.add(ctx, self.s[0], Constant(pre_constants[0]));
// adding pre-constants and inputs to the elements for which both are available
for ((x, constant), input) in
self.s.iter_mut().zip(pre_constants.iter()).skip(1).zip(inputs.iter())
{
*x = gate.sum(ctx, [Existing(*x), Existing(*input), Constant(*constant)]);
}
let offset = inputs.len() + 1;
// adding only pre-constants when no input is left
for (i, (x, constant)) in
self.s.iter_mut().zip(pre_constants.iter()).skip(offset).enumerate()
{
*x = gate.add(ctx, *x, Constant(if i == 0 { F::ONE + constant } else { *constant }));
// the if idx == 0 { F::one() } else { F::zero() } is to pad the input with a single 1 and then 0s
// this is the padding suggested in pg 31 of https://eprint.iacr.org/2019/458.pdf and in Section 4.2 (Variable-Input-Length Hashing. The padding consists of one field element being 1, and the remaining elements being 0.)
}
}
/// Absorb inputs with a variable length.
///
/// `inputs` is right padded.
fn absorb_var_len_with_pre_constants(
&mut self,
ctx: &mut Context<F>,
gate: &impl GateInstructions<F>,
inputs: [AssignedValue<F>; RATE],
len: AssignedValue<F>,
pre_constants: &[F; T],
) {
// Explanation of what's going on: before each round of the poseidon permutation,
// two things have to be added to the state: inputs (the absorbed elements) and
// preconstants. Imagine the state as a list of T elements, the first of which is
// the capacity: |--cap--|--el1--|--el2--|--elR--|
// - A preconstant is added to each of all T elements (which is different for each)
// - The inputs are added to all elements starting from el1 (so, not to the capacity),
// to as many elements as inputs are available.
// - To the first element for which no input is left (if any), an extra 1 is added.
// Adding preconstants to the current state.
for (i, pre_const) in pre_constants.iter().enumerate() {
self.s[i] = gate.add(ctx, self.s[i], Constant(*pre_const));
}
// Generate a mask array where a[i] = i < len for i = 0..RATE.
let idx = gate.dec(ctx, len);
let len_indicator = gate.idx_to_indicator(ctx, idx, RATE);
// inputs_mask[i] = sum(len_indicator[i..])
let mut inputs_mask =
gate.partial_sums(ctx, len_indicator.clone().into_iter().rev()).collect_vec();
inputs_mask.reverse();
let padded_inputs = inputs
.iter()
.zip(inputs_mask.iter())
.map(|(input, mask)| gate.mul(ctx, *input, *mask))
.collect_vec();
for i in 0..RATE {
// Add all inputs.
self.s[i + 1] = gate.add(ctx, self.s[i + 1], padded_inputs[i]);
// Add the extra 1 after inputs.
if i + 2 < T {
self.s[i + 2] = gate.add(ctx, self.s[i + 2], len_indicator[i]);
}
}
// If len == 0, inputs_mask is all 0. Then the extra 1 should be added into s[1].
let empty_extra_one = gate.not(ctx, inputs_mask[0]);
self.s[1] = gate.add(ctx, self.s[1], empty_extra_one);
}
fn apply_mds(
&mut self,
ctx: &mut Context<F>,
gate: &impl GateInstructions<F>,
mds: &[[F; T]; T],
) {
let res = mds
.iter()
.map(|row| {
gate.inner_product(ctx, self.s.iter().copied(), row.iter().map(|c| Constant(*c)))
})
.collect::<Vec<_>>();
self.s = res.try_into().unwrap();
}
fn apply_sparse_mds(
&mut self,
ctx: &mut Context<F>,
gate: &impl GateInstructions<F>,
mds: &SparseMDSMatrix<F, T, RATE>,
) {
self.s = iter::once(gate.inner_product(
ctx,
self.s.iter().copied(),
mds.row.iter().map(|c| Constant(*c)),
))
.chain(
mds.col_hat
.iter()
.zip(self.s.iter().skip(1))
.map(|(coeff, state)| gate.mul_add(ctx, self.s[0], Constant(*coeff), *state)),
)
.collect::<Vec<_>>()
.try_into()
.unwrap();
}
}