blake2b_simd/
blake2bp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
//! BLAKE2bp, a variant of BLAKE2b that uses SIMD more efficiently.
//!
//! The AVX2 implementation of BLAKE2bp is about twice as fast that of BLAKE2b.
//! However, note that it's a different hash function, and it gives a different
//! hash from BLAKE2b for the same input.
//!
//! # Example
//!
//! ```
//! use blake2b_simd::blake2bp;
//!
//! let hash = blake2bp::Params::new()
//!     .hash_length(16)
//!     .key(b"The Magic Words are Squeamish Ossifrage")
//!     .to_state()
//!     .update(b"foo")
//!     .update(b"bar")
//!     .update(b"baz")
//!     .finalize();
//! assert_eq!("e69c7d2c42a5ac14948772231c68c552", &hash.to_hex());
//! ```

use crate::guts::{Finalize, Implementation, Job, LastNode, Stride};
use crate::many;
use crate::Count;
use crate::Hash;
use crate::Word;
use crate::BLOCKBYTES;
use crate::KEYBYTES;
use crate::OUTBYTES;
use core::cmp;
use core::fmt;
use core::mem::size_of;

#[cfg(feature = "std")]
use std;

pub(crate) const DEGREE: usize = 4;

/// Compute the BLAKE2bp hash of a slice of bytes all at once, using default
/// parameters.
///
/// # Example
///
/// ```
/// # use blake2b_simd::blake2bp::blake2bp;
/// let expected = "8ca9ccee7946afcb686fe7556628b5ba1bf9a691da37ca58cd049354d99f3704\
///                 2c007427e5f219b9ab5063707ec6823872dee413ee014b4d02f2ebb6abb5f643";
/// let hash = blake2bp(b"foo");
/// assert_eq!(expected, &hash.to_hex());
/// ```
pub fn blake2bp(input: &[u8]) -> Hash {
    Params::new().hash(input)
}

/// A parameter builder for BLAKE2bp, just like the [`Params`](../struct.Params.html) type for
/// BLAKE2b.
///
/// This builder only supports configuring the hash length and a secret key. This matches the
/// options provided by the [reference
/// implementation](https://github.com/BLAKE2/BLAKE2/blob/320c325437539ae91091ce62efec1913cd8093c2/ref/blake2.h#L162-L165).
///
/// # Example
///
/// ```
/// use blake2b_simd::blake2bp;
/// let mut state = blake2bp::Params::new().hash_length(32).to_state();
/// ```
#[derive(Clone)]
pub struct Params {
    hash_length: u8,
    key_length: u8,
    key: [u8; KEYBYTES],
    implementation: Implementation,
}

impl Params {
    /// Equivalent to `Params::default()`.
    pub fn new() -> Self {
        Self {
            hash_length: OUTBYTES as u8,
            key_length: 0,
            key: [0; KEYBYTES],
            implementation: Implementation::detect(),
        }
    }

    fn to_words(&self) -> ([[Word; 8]; DEGREE], [Word; 8]) {
        let mut base_params = crate::Params::new();
        base_params
            .hash_length(self.hash_length as usize)
            .key(&self.key[..self.key_length as usize])
            .fanout(DEGREE as u8)
            .max_depth(2)
            .max_leaf_length(0)
            // Note that inner_hash_length is always OUTBYTES, regardless of the hash_length
            // parameter. This isn't documented in the spec, but it matches the behavior of the
            // reference implementation: https://github.com/BLAKE2/BLAKE2/blob/320c325437539ae91091ce62efec1913cd8093c2/ref/blake2bp-ref.c#L55
            .inner_hash_length(OUTBYTES);
        let leaf_words = |worker_index| {
            base_params
                .clone()
                .node_offset(worker_index)
                .node_depth(0)
                // Note that setting the last_node flag here has no effect,
                // because it isn't included in the state words.
                .to_words()
        };
        let leaf_words = [leaf_words(0), leaf_words(1), leaf_words(2), leaf_words(3)];
        let root_words = base_params
            .clone()
            .node_offset(0)
            .node_depth(1)
            // Note that setting the last_node flag here has no effect, because
            // it isn't included in the state words. Also note that because
            // we're only preserving its state words, the root node won't hash
            // any key bytes.
            .to_words();
        (leaf_words, root_words)
    }

    /// Hash an input all at once with these parameters.
    pub fn hash(&self, input: &[u8]) -> Hash {
        // If there's a key, just fall back to using the State.
        if self.key_length > 0 {
            return self.to_state().update(input).finalize();
        }
        let (mut leaf_words, mut root_words) = self.to_words();
        // Hash each leaf in parallel.
        let jobs = leaf_words.iter_mut().enumerate().map(|(i, words)| {
            let input_start = cmp::min(input.len(), i * BLOCKBYTES);
            Job {
                input: &input[input_start..],
                words,
                count: 0,
                last_node: if i == DEGREE - 1 {
                    LastNode::Yes
                } else {
                    LastNode::No
                },
            }
        });
        many::compress_many(jobs, self.implementation, Finalize::Yes, Stride::Parallel);
        // Hash each leaf into the root.
        finalize_root_words(
            &leaf_words,
            &mut root_words,
            self.hash_length,
            self.implementation,
        )
    }

    /// Construct a BLAKE2bp `State` object based on these parameters.
    pub fn to_state(&self) -> State {
        State::with_params(self)
    }

    /// Set the length of the final hash, from 1 to `OUTBYTES` (64). Apart from controlling the
    /// length of the final `Hash`, this is also associated data, and changing it will result in a
    /// totally different hash.
    pub fn hash_length(&mut self, length: usize) -> &mut Self {
        assert!(
            1 <= length && length <= OUTBYTES,
            "Bad hash length: {}",
            length
        );
        self.hash_length = length as u8;
        self
    }

    /// Use a secret key, so that BLAKE2bp acts as a MAC. The maximum key length is `KEYBYTES`
    /// (64). An empty key is equivalent to having no key at all.
    pub fn key(&mut self, key: &[u8]) -> &mut Self {
        assert!(key.len() <= KEYBYTES, "Bad key length: {}", key.len());
        self.key_length = key.len() as u8;
        self.key = [0; KEYBYTES];
        self.key[..key.len()].copy_from_slice(key);
        self
    }
}

impl Default for Params {
    fn default() -> Self {
        Self::new()
    }
}

impl fmt::Debug for Params {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "Params {{ hash_length: {}, key_length: {} }}",
            self.hash_length,
            // NB: Don't print the key itself. Debug shouldn't leak secrets.
            self.key_length,
        )
    }
}

/// An incremental hasher for BLAKE2bp, just like the [`State`](../struct.State.html) type for
/// BLAKE2b.
///
/// # Example
///
/// ```
/// use blake2b_simd::blake2bp;
///
/// let mut state = blake2bp::State::new();
/// state.update(b"foo");
/// state.update(b"bar");
/// let hash = state.finalize();
///
/// let expected = "e654427b6ef02949471712263e59071abbb6aa94855674c1daeed6cfaf127c33\
///                 dfa3205f7f7f71e4f0673d25fa82a368488911f446bccd323af3ab03f53e56e5";
/// assert_eq!(expected, &hash.to_hex());
/// ```
#[derive(Clone)]
pub struct State {
    leaf_words: [[Word; 8]; DEGREE],
    root_words: [Word; 8],
    // Note that this buffer is twice as large as what compress4 needs. That guarantees that we
    // have enough input when we compress to know we don't need to finalize any of the leaves.
    buf: [u8; 2 * DEGREE * BLOCKBYTES],
    buf_len: u16,
    // Note that this is the *per-leaf* count.
    count: Count,
    hash_length: u8,
    implementation: Implementation,
    is_keyed: bool,
}

impl State {
    /// Equivalent to `State::default()` or `Params::default().to_state()`.
    pub fn new() -> Self {
        Self::with_params(&Params::default())
    }

    fn with_params(params: &Params) -> Self {
        let (leaf_words, root_words) = params.to_words();

        // If a key is set, initalize the buffer to contain the key bytes. Note
        // that only the leaves hash key bytes. The root doesn't, even though
        // the key length it still set in its parameters. Again this isn't
        // documented in the spec, but it matches the behavior of the reference
        // implementation:
        // https://github.com/BLAKE2/BLAKE2/blob/320c325437539ae91091ce62efec1913cd8093c2/ref/blake2bp-ref.c#L128
        // This particular behavior (though not the inner hash length behavior
        // above) is also corroborated by the official test vectors; see
        // tests/vector_tests.rs.
        let mut buf = [0; 2 * DEGREE * BLOCKBYTES];
        let mut buf_len = 0;
        if params.key_length > 0 {
            for i in 0..DEGREE {
                let keybytes = &params.key[..params.key_length as usize];
                buf[i * BLOCKBYTES..][..keybytes.len()].copy_from_slice(keybytes);
                buf_len = BLOCKBYTES * DEGREE;
            }
        }

        Self {
            leaf_words,
            root_words,
            buf,
            buf_len: buf_len as u16,
            count: 0, // count gets updated in self.compress()
            hash_length: params.hash_length,
            implementation: params.implementation,
            is_keyed: params.key_length > 0,
        }
    }

    fn fill_buf(&mut self, input: &mut &[u8]) {
        let take = cmp::min(self.buf.len() - self.buf_len as usize, input.len());
        self.buf[self.buf_len as usize..][..take].copy_from_slice(&input[..take]);
        self.buf_len += take as u16;
        *input = &input[take..];
    }

    fn compress_to_leaves(
        leaves: &mut [[Word; 8]; DEGREE],
        input: &[u8],
        count: &mut Count,
        implementation: Implementation,
    ) {
        // Input is assumed to be an even number of blocks for each leaf. Since
        // we're not finilizing, debug asserts will fire otherwise.
        let jobs = leaves.iter_mut().enumerate().map(|(i, words)| {
            Job {
                input: &input[i * BLOCKBYTES..],
                words,
                count: *count,
                last_node: LastNode::No, // irrelevant when not finalizing
            }
        });
        many::compress_many(jobs, implementation, Finalize::No, Stride::Parallel);
        // Note that count is the bytes input *per-leaf*.
        *count = count.wrapping_add((input.len() / DEGREE) as Count);
    }

    /// Add input to the hash. You can call `update` any number of times.
    pub fn update(&mut self, mut input: &[u8]) -> &mut Self {
        // If we have a partial buffer, try to complete it. If we complete it and there's more
        // input waiting, we need to compress to make more room. However, because we need to be
        // sure that *none* of the leaves would need to be finalized as part of this round of
        // compression, we need to buffer more than we would for BLAKE2b.
        if self.buf_len > 0 {
            self.fill_buf(&mut input);
            // The buffer is large enough for two compressions. If we've filled
            // the buffer and there's still more input coming, then we have to
            // do at least one compression. If there's enough input still
            // coming that all the leaves are guaranteed to get more, do both
            // compressions in the buffer. Otherwise, do just one and shift the
            // back half of the buffer to the front.
            if !input.is_empty() {
                if input.len() > (DEGREE - 1) * BLOCKBYTES {
                    // Enough input coming to do both compressions.
                    Self::compress_to_leaves(
                        &mut self.leaf_words,
                        &self.buf,
                        &mut self.count,
                        self.implementation,
                    );
                    self.buf_len = 0;
                } else {
                    // Only enough input coming for one compression.
                    Self::compress_to_leaves(
                        &mut self.leaf_words,
                        &self.buf[..DEGREE * BLOCKBYTES],
                        &mut self.count,
                        self.implementation,
                    );
                    self.buf_len = (DEGREE * BLOCKBYTES) as u16;
                    let (buf_front, buf_back) = self.buf.split_at_mut(DEGREE * BLOCKBYTES);
                    buf_front.copy_from_slice(buf_back);
                }
            }
        }

        // Now we directly compress as much input as possible, without copying
        // it into the buffer. We need to make sure we buffer at least one byte
        // for each of the leaves, so that we know we don't need to finalize
        // them.
        let needed_tail = (DEGREE - 1) * BLOCKBYTES + 1;
        let mut bulk_bytes = input.len().saturating_sub(needed_tail);
        bulk_bytes -= bulk_bytes % (DEGREE * BLOCKBYTES);
        if bulk_bytes > 0 {
            Self::compress_to_leaves(
                &mut self.leaf_words,
                &input[..bulk_bytes],
                &mut self.count,
                self.implementation,
            );
            input = &input[bulk_bytes..];
        }

        // Buffer any remaining input, to be either compressed or finalized in
        // a subsequent call.
        self.fill_buf(&mut input);
        debug_assert_eq!(0, input.len());
        self
    }

    /// Finalize the state and return a `Hash`. This method is idempotent, and calling it multiple
    /// times will give the same result. It's also possible to `update` with more input in between.
    pub fn finalize(&self) -> Hash {
        // Hash whatever's remaining in the buffer and finalize the leaves.
        let buf_len = self.buf_len as usize;
        let mut leaves_copy = self.leaf_words;
        let jobs = leaves_copy
            .iter_mut()
            .enumerate()
            .map(|(leaf_index, leaf_words)| {
                let input = &self.buf[cmp::min(leaf_index * BLOCKBYTES, buf_len)..buf_len];
                Job {
                    input,
                    words: leaf_words,
                    count: self.count,
                    last_node: if leaf_index == DEGREE - 1 {
                        LastNode::Yes
                    } else {
                        LastNode::No
                    },
                }
            });
        many::compress_many(jobs, self.implementation, Finalize::Yes, Stride::Parallel);

        // Concatenate each leaf into the root and hash that.
        let mut root_words_copy = self.root_words;
        finalize_root_words(
            &leaves_copy,
            &mut root_words_copy,
            self.hash_length,
            self.implementation,
        )
    }

    /// Return the total number of bytes input so far.
    ///
    /// Note that `count` doesn't include the bytes of the key block, if any.
    /// It's exactly the total number of input bytes fed to `update`.
    pub fn count(&self) -> Count {
        // Remember that self.count is *per-leaf*.
        let mut ret = self
            .count
            .wrapping_mul(DEGREE as Count)
            .wrapping_add(self.buf_len as Count);
        if self.is_keyed {
            ret -= (DEGREE * BLOCKBYTES) as Count;
        }
        ret
    }
}

#[cfg(feature = "std")]
impl std::io::Write for State {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        self.update(buf);
        Ok(buf.len())
    }

    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}

impl fmt::Debug for State {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "State {{ count: {}, hash_length: {} }}",
            self.count(),
            self.hash_length,
        )
    }
}

impl Default for State {
    fn default() -> Self {
        Self::with_params(&Params::default())
    }
}

// Compress each of the four finalized hashes into the root words as input,
// using two compressions. Note that even if a future version of this
// implementation supports the hash_length parameter and sets it as associated
// data for all nodes, this step must still use the untruncated output of each
// leaf. Note also that, as mentioned above, the root node doesn't hash any key
// bytes.
fn finalize_root_words(
    leaf_words: &[[Word; 8]; DEGREE],
    root_words: &mut [Word; 8],
    hash_length: u8,
    imp: Implementation,
) -> Hash {
    debug_assert_eq!(OUTBYTES, 8 * size_of::<Word>());
    let mut block = [0; DEGREE * OUTBYTES];
    for (word, chunk) in leaf_words
        .iter()
        .flat_map(|words| words.iter())
        .zip(block.chunks_exact_mut(size_of::<Word>()))
    {
        chunk.copy_from_slice(&word.to_le_bytes());
    }
    imp.compress1_loop(
        &block,
        root_words,
        0,
        LastNode::Yes,
        Finalize::Yes,
        Stride::Serial,
    );
    Hash {
        bytes: crate::state_words_to_bytes(&root_words),
        len: hash_length,
    }
}

pub(crate) fn force_portable(params: &mut Params) {
    params.implementation = Implementation::portable();
}

#[cfg(test)]
pub(crate) mod test {
    use super::*;
    use crate::paint_test_input;

    // This is a simple reference implementation without the complicated buffering or parameter
    // support of the real implementation. We need this because the official test vectors don't
    // include any inputs large enough to exercise all the branches in the buffering logic.
    fn blake2bp_reference(input: &[u8]) -> Hash {
        let mut leaves = arrayvec::ArrayVec::<_, DEGREE>::new();
        for leaf_index in 0..DEGREE {
            leaves.push(
                crate::Params::new()
                    .fanout(DEGREE as u8)
                    .max_depth(2)
                    .node_offset(leaf_index as u64)
                    .inner_hash_length(OUTBYTES)
                    .to_state(),
            );
        }
        leaves[DEGREE - 1].set_last_node(true);
        for (i, chunk) in input.chunks(BLOCKBYTES).enumerate() {
            leaves[i % DEGREE].update(chunk);
        }
        let mut root = crate::Params::new()
            .fanout(DEGREE as u8)
            .max_depth(2)
            .node_depth(1)
            .inner_hash_length(OUTBYTES)
            .last_node(true)
            .to_state();
        for leaf in &mut leaves {
            root.update(leaf.finalize().as_bytes());
        }
        root.finalize()
    }

    #[test]
    fn test_against_reference() {
        let mut buf = [0; 21 * BLOCKBYTES];
        paint_test_input(&mut buf);
        // - 8 blocks is just enought to fill the double buffer.
        // - 9 blocks triggers the "perform one compression on the double buffer" case.
        // - 11 blocks is the largest input where only one compression may be performed, on the
        //   first half of the buffer, because there's not enough input to avoid needing to
        //   finalize the second half.
        // - 12 blocks triggers the "perform both compressions in the double buffer" case.
        // - 15 blocks is the largest input where, after compressing 8 blocks from the buffer,
        //   there's not enough input to hash directly from memory.
        // - 16 blocks triggers "after emptying the buffer, hash directly from memory".
        for num_blocks in 0..=20 {
            for &extra in &[0, 1, BLOCKBYTES - 1] {
                for &portable in &[false, true] {
                    // eprintln!("\ncase -----");
                    // dbg!(num_blocks);
                    // dbg!(extra);
                    // dbg!(portable);

                    // First hash the input all at once, as a sanity check.
                    let mut params = Params::new();
                    if portable {
                        force_portable(&mut params);
                    }
                    let input = &buf[..num_blocks * BLOCKBYTES + extra];
                    let expected = blake2bp_reference(&input);
                    let mut state = params.to_state();
                    let found = state.update(input).finalize();
                    assert_eq!(expected, found);

                    // Then, do it again, but buffer 1 byte of input first. That causes the buffering
                    // branch to trigger.
                    let mut state = params.to_state();
                    let maybe_one = cmp::min(1, input.len());
                    state.update(&input[..maybe_one]);
                    assert_eq!(maybe_one as Count, state.count());
                    // Do a throwaway finalize here to check for idempotency.
                    state.finalize();
                    state.update(&input[maybe_one..]);
                    assert_eq!(input.len() as Count, state.count());
                    let found = state.finalize();
                    assert_eq!(expected, found);

                    // Finally, do it again with the all-at-once interface.
                    assert_eq!(expected, blake2bp(input));
                }
            }
        }
    }
}