blake2b_simd/blake2bp.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
//! BLAKE2bp, a variant of BLAKE2b that uses SIMD more efficiently.
//!
//! The AVX2 implementation of BLAKE2bp is about twice as fast that of BLAKE2b.
//! However, note that it's a different hash function, and it gives a different
//! hash from BLAKE2b for the same input.
//!
//! # Example
//!
//! ```
//! use blake2b_simd::blake2bp;
//!
//! let hash = blake2bp::Params::new()
//! .hash_length(16)
//! .key(b"The Magic Words are Squeamish Ossifrage")
//! .to_state()
//! .update(b"foo")
//! .update(b"bar")
//! .update(b"baz")
//! .finalize();
//! assert_eq!("e69c7d2c42a5ac14948772231c68c552", &hash.to_hex());
//! ```
use crate::guts::{Finalize, Implementation, Job, LastNode, Stride};
use crate::many;
use crate::Count;
use crate::Hash;
use crate::Word;
use crate::BLOCKBYTES;
use crate::KEYBYTES;
use crate::OUTBYTES;
use core::cmp;
use core::fmt;
use core::mem::size_of;
#[cfg(feature = "std")]
use std;
pub(crate) const DEGREE: usize = 4;
/// Compute the BLAKE2bp hash of a slice of bytes all at once, using default
/// parameters.
///
/// # Example
///
/// ```
/// # use blake2b_simd::blake2bp::blake2bp;
/// let expected = "8ca9ccee7946afcb686fe7556628b5ba1bf9a691da37ca58cd049354d99f3704\
/// 2c007427e5f219b9ab5063707ec6823872dee413ee014b4d02f2ebb6abb5f643";
/// let hash = blake2bp(b"foo");
/// assert_eq!(expected, &hash.to_hex());
/// ```
pub fn blake2bp(input: &[u8]) -> Hash {
Params::new().hash(input)
}
/// A parameter builder for BLAKE2bp, just like the [`Params`](../struct.Params.html) type for
/// BLAKE2b.
///
/// This builder only supports configuring the hash length and a secret key. This matches the
/// options provided by the [reference
/// implementation](https://github.com/BLAKE2/BLAKE2/blob/320c325437539ae91091ce62efec1913cd8093c2/ref/blake2.h#L162-L165).
///
/// # Example
///
/// ```
/// use blake2b_simd::blake2bp;
/// let mut state = blake2bp::Params::new().hash_length(32).to_state();
/// ```
#[derive(Clone)]
pub struct Params {
hash_length: u8,
key_length: u8,
key: [u8; KEYBYTES],
implementation: Implementation,
}
impl Params {
/// Equivalent to `Params::default()`.
pub fn new() -> Self {
Self {
hash_length: OUTBYTES as u8,
key_length: 0,
key: [0; KEYBYTES],
implementation: Implementation::detect(),
}
}
fn to_words(&self) -> ([[Word; 8]; DEGREE], [Word; 8]) {
let mut base_params = crate::Params::new();
base_params
.hash_length(self.hash_length as usize)
.key(&self.key[..self.key_length as usize])
.fanout(DEGREE as u8)
.max_depth(2)
.max_leaf_length(0)
// Note that inner_hash_length is always OUTBYTES, regardless of the hash_length
// parameter. This isn't documented in the spec, but it matches the behavior of the
// reference implementation: https://github.com/BLAKE2/BLAKE2/blob/320c325437539ae91091ce62efec1913cd8093c2/ref/blake2bp-ref.c#L55
.inner_hash_length(OUTBYTES);
let leaf_words = |worker_index| {
base_params
.clone()
.node_offset(worker_index)
.node_depth(0)
// Note that setting the last_node flag here has no effect,
// because it isn't included in the state words.
.to_words()
};
let leaf_words = [leaf_words(0), leaf_words(1), leaf_words(2), leaf_words(3)];
let root_words = base_params
.clone()
.node_offset(0)
.node_depth(1)
// Note that setting the last_node flag here has no effect, because
// it isn't included in the state words. Also note that because
// we're only preserving its state words, the root node won't hash
// any key bytes.
.to_words();
(leaf_words, root_words)
}
/// Hash an input all at once with these parameters.
pub fn hash(&self, input: &[u8]) -> Hash {
// If there's a key, just fall back to using the State.
if self.key_length > 0 {
return self.to_state().update(input).finalize();
}
let (mut leaf_words, mut root_words) = self.to_words();
// Hash each leaf in parallel.
let jobs = leaf_words.iter_mut().enumerate().map(|(i, words)| {
let input_start = cmp::min(input.len(), i * BLOCKBYTES);
Job {
input: &input[input_start..],
words,
count: 0,
last_node: if i == DEGREE - 1 {
LastNode::Yes
} else {
LastNode::No
},
}
});
many::compress_many(jobs, self.implementation, Finalize::Yes, Stride::Parallel);
// Hash each leaf into the root.
finalize_root_words(
&leaf_words,
&mut root_words,
self.hash_length,
self.implementation,
)
}
/// Construct a BLAKE2bp `State` object based on these parameters.
pub fn to_state(&self) -> State {
State::with_params(self)
}
/// Set the length of the final hash, from 1 to `OUTBYTES` (64). Apart from controlling the
/// length of the final `Hash`, this is also associated data, and changing it will result in a
/// totally different hash.
pub fn hash_length(&mut self, length: usize) -> &mut Self {
assert!(
1 <= length && length <= OUTBYTES,
"Bad hash length: {}",
length
);
self.hash_length = length as u8;
self
}
/// Use a secret key, so that BLAKE2bp acts as a MAC. The maximum key length is `KEYBYTES`
/// (64). An empty key is equivalent to having no key at all.
pub fn key(&mut self, key: &[u8]) -> &mut Self {
assert!(key.len() <= KEYBYTES, "Bad key length: {}", key.len());
self.key_length = key.len() as u8;
self.key = [0; KEYBYTES];
self.key[..key.len()].copy_from_slice(key);
self
}
}
impl Default for Params {
fn default() -> Self {
Self::new()
}
}
impl fmt::Debug for Params {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"Params {{ hash_length: {}, key_length: {} }}",
self.hash_length,
// NB: Don't print the key itself. Debug shouldn't leak secrets.
self.key_length,
)
}
}
/// An incremental hasher for BLAKE2bp, just like the [`State`](../struct.State.html) type for
/// BLAKE2b.
///
/// # Example
///
/// ```
/// use blake2b_simd::blake2bp;
///
/// let mut state = blake2bp::State::new();
/// state.update(b"foo");
/// state.update(b"bar");
/// let hash = state.finalize();
///
/// let expected = "e654427b6ef02949471712263e59071abbb6aa94855674c1daeed6cfaf127c33\
/// dfa3205f7f7f71e4f0673d25fa82a368488911f446bccd323af3ab03f53e56e5";
/// assert_eq!(expected, &hash.to_hex());
/// ```
#[derive(Clone)]
pub struct State {
leaf_words: [[Word; 8]; DEGREE],
root_words: [Word; 8],
// Note that this buffer is twice as large as what compress4 needs. That guarantees that we
// have enough input when we compress to know we don't need to finalize any of the leaves.
buf: [u8; 2 * DEGREE * BLOCKBYTES],
buf_len: u16,
// Note that this is the *per-leaf* count.
count: Count,
hash_length: u8,
implementation: Implementation,
is_keyed: bool,
}
impl State {
/// Equivalent to `State::default()` or `Params::default().to_state()`.
pub fn new() -> Self {
Self::with_params(&Params::default())
}
fn with_params(params: &Params) -> Self {
let (leaf_words, root_words) = params.to_words();
// If a key is set, initalize the buffer to contain the key bytes. Note
// that only the leaves hash key bytes. The root doesn't, even though
// the key length it still set in its parameters. Again this isn't
// documented in the spec, but it matches the behavior of the reference
// implementation:
// https://github.com/BLAKE2/BLAKE2/blob/320c325437539ae91091ce62efec1913cd8093c2/ref/blake2bp-ref.c#L128
// This particular behavior (though not the inner hash length behavior
// above) is also corroborated by the official test vectors; see
// tests/vector_tests.rs.
let mut buf = [0; 2 * DEGREE * BLOCKBYTES];
let mut buf_len = 0;
if params.key_length > 0 {
for i in 0..DEGREE {
let keybytes = ¶ms.key[..params.key_length as usize];
buf[i * BLOCKBYTES..][..keybytes.len()].copy_from_slice(keybytes);
buf_len = BLOCKBYTES * DEGREE;
}
}
Self {
leaf_words,
root_words,
buf,
buf_len: buf_len as u16,
count: 0, // count gets updated in self.compress()
hash_length: params.hash_length,
implementation: params.implementation,
is_keyed: params.key_length > 0,
}
}
fn fill_buf(&mut self, input: &mut &[u8]) {
let take = cmp::min(self.buf.len() - self.buf_len as usize, input.len());
self.buf[self.buf_len as usize..][..take].copy_from_slice(&input[..take]);
self.buf_len += take as u16;
*input = &input[take..];
}
fn compress_to_leaves(
leaves: &mut [[Word; 8]; DEGREE],
input: &[u8],
count: &mut Count,
implementation: Implementation,
) {
// Input is assumed to be an even number of blocks for each leaf. Since
// we're not finilizing, debug asserts will fire otherwise.
let jobs = leaves.iter_mut().enumerate().map(|(i, words)| {
Job {
input: &input[i * BLOCKBYTES..],
words,
count: *count,
last_node: LastNode::No, // irrelevant when not finalizing
}
});
many::compress_many(jobs, implementation, Finalize::No, Stride::Parallel);
// Note that count is the bytes input *per-leaf*.
*count = count.wrapping_add((input.len() / DEGREE) as Count);
}
/// Add input to the hash. You can call `update` any number of times.
pub fn update(&mut self, mut input: &[u8]) -> &mut Self {
// If we have a partial buffer, try to complete it. If we complete it and there's more
// input waiting, we need to compress to make more room. However, because we need to be
// sure that *none* of the leaves would need to be finalized as part of this round of
// compression, we need to buffer more than we would for BLAKE2b.
if self.buf_len > 0 {
self.fill_buf(&mut input);
// The buffer is large enough for two compressions. If we've filled
// the buffer and there's still more input coming, then we have to
// do at least one compression. If there's enough input still
// coming that all the leaves are guaranteed to get more, do both
// compressions in the buffer. Otherwise, do just one and shift the
// back half of the buffer to the front.
if !input.is_empty() {
if input.len() > (DEGREE - 1) * BLOCKBYTES {
// Enough input coming to do both compressions.
Self::compress_to_leaves(
&mut self.leaf_words,
&self.buf,
&mut self.count,
self.implementation,
);
self.buf_len = 0;
} else {
// Only enough input coming for one compression.
Self::compress_to_leaves(
&mut self.leaf_words,
&self.buf[..DEGREE * BLOCKBYTES],
&mut self.count,
self.implementation,
);
self.buf_len = (DEGREE * BLOCKBYTES) as u16;
let (buf_front, buf_back) = self.buf.split_at_mut(DEGREE * BLOCKBYTES);
buf_front.copy_from_slice(buf_back);
}
}
}
// Now we directly compress as much input as possible, without copying
// it into the buffer. We need to make sure we buffer at least one byte
// for each of the leaves, so that we know we don't need to finalize
// them.
let needed_tail = (DEGREE - 1) * BLOCKBYTES + 1;
let mut bulk_bytes = input.len().saturating_sub(needed_tail);
bulk_bytes -= bulk_bytes % (DEGREE * BLOCKBYTES);
if bulk_bytes > 0 {
Self::compress_to_leaves(
&mut self.leaf_words,
&input[..bulk_bytes],
&mut self.count,
self.implementation,
);
input = &input[bulk_bytes..];
}
// Buffer any remaining input, to be either compressed or finalized in
// a subsequent call.
self.fill_buf(&mut input);
debug_assert_eq!(0, input.len());
self
}
/// Finalize the state and return a `Hash`. This method is idempotent, and calling it multiple
/// times will give the same result. It's also possible to `update` with more input in between.
pub fn finalize(&self) -> Hash {
// Hash whatever's remaining in the buffer and finalize the leaves.
let buf_len = self.buf_len as usize;
let mut leaves_copy = self.leaf_words;
let jobs = leaves_copy
.iter_mut()
.enumerate()
.map(|(leaf_index, leaf_words)| {
let input = &self.buf[cmp::min(leaf_index * BLOCKBYTES, buf_len)..buf_len];
Job {
input,
words: leaf_words,
count: self.count,
last_node: if leaf_index == DEGREE - 1 {
LastNode::Yes
} else {
LastNode::No
},
}
});
many::compress_many(jobs, self.implementation, Finalize::Yes, Stride::Parallel);
// Concatenate each leaf into the root and hash that.
let mut root_words_copy = self.root_words;
finalize_root_words(
&leaves_copy,
&mut root_words_copy,
self.hash_length,
self.implementation,
)
}
/// Return the total number of bytes input so far.
///
/// Note that `count` doesn't include the bytes of the key block, if any.
/// It's exactly the total number of input bytes fed to `update`.
pub fn count(&self) -> Count {
// Remember that self.count is *per-leaf*.
let mut ret = self
.count
.wrapping_mul(DEGREE as Count)
.wrapping_add(self.buf_len as Count);
if self.is_keyed {
ret -= (DEGREE * BLOCKBYTES) as Count;
}
ret
}
}
#[cfg(feature = "std")]
impl std::io::Write for State {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
self.update(buf);
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
Ok(())
}
}
impl fmt::Debug for State {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"State {{ count: {}, hash_length: {} }}",
self.count(),
self.hash_length,
)
}
}
impl Default for State {
fn default() -> Self {
Self::with_params(&Params::default())
}
}
// Compress each of the four finalized hashes into the root words as input,
// using two compressions. Note that even if a future version of this
// implementation supports the hash_length parameter and sets it as associated
// data for all nodes, this step must still use the untruncated output of each
// leaf. Note also that, as mentioned above, the root node doesn't hash any key
// bytes.
fn finalize_root_words(
leaf_words: &[[Word; 8]; DEGREE],
root_words: &mut [Word; 8],
hash_length: u8,
imp: Implementation,
) -> Hash {
debug_assert_eq!(OUTBYTES, 8 * size_of::<Word>());
let mut block = [0; DEGREE * OUTBYTES];
for (word, chunk) in leaf_words
.iter()
.flat_map(|words| words.iter())
.zip(block.chunks_exact_mut(size_of::<Word>()))
{
chunk.copy_from_slice(&word.to_le_bytes());
}
imp.compress1_loop(
&block,
root_words,
0,
LastNode::Yes,
Finalize::Yes,
Stride::Serial,
);
Hash {
bytes: crate::state_words_to_bytes(&root_words),
len: hash_length,
}
}
pub(crate) fn force_portable(params: &mut Params) {
params.implementation = Implementation::portable();
}
#[cfg(test)]
pub(crate) mod test {
use super::*;
use crate::paint_test_input;
// This is a simple reference implementation without the complicated buffering or parameter
// support of the real implementation. We need this because the official test vectors don't
// include any inputs large enough to exercise all the branches in the buffering logic.
fn blake2bp_reference(input: &[u8]) -> Hash {
let mut leaves = arrayvec::ArrayVec::<_, DEGREE>::new();
for leaf_index in 0..DEGREE {
leaves.push(
crate::Params::new()
.fanout(DEGREE as u8)
.max_depth(2)
.node_offset(leaf_index as u64)
.inner_hash_length(OUTBYTES)
.to_state(),
);
}
leaves[DEGREE - 1].set_last_node(true);
for (i, chunk) in input.chunks(BLOCKBYTES).enumerate() {
leaves[i % DEGREE].update(chunk);
}
let mut root = crate::Params::new()
.fanout(DEGREE as u8)
.max_depth(2)
.node_depth(1)
.inner_hash_length(OUTBYTES)
.last_node(true)
.to_state();
for leaf in &mut leaves {
root.update(leaf.finalize().as_bytes());
}
root.finalize()
}
#[test]
fn test_against_reference() {
let mut buf = [0; 21 * BLOCKBYTES];
paint_test_input(&mut buf);
// - 8 blocks is just enought to fill the double buffer.
// - 9 blocks triggers the "perform one compression on the double buffer" case.
// - 11 blocks is the largest input where only one compression may be performed, on the
// first half of the buffer, because there's not enough input to avoid needing to
// finalize the second half.
// - 12 blocks triggers the "perform both compressions in the double buffer" case.
// - 15 blocks is the largest input where, after compressing 8 blocks from the buffer,
// there's not enough input to hash directly from memory.
// - 16 blocks triggers "after emptying the buffer, hash directly from memory".
for num_blocks in 0..=20 {
for &extra in &[0, 1, BLOCKBYTES - 1] {
for &portable in &[false, true] {
// eprintln!("\ncase -----");
// dbg!(num_blocks);
// dbg!(extra);
// dbg!(portable);
// First hash the input all at once, as a sanity check.
let mut params = Params::new();
if portable {
force_portable(&mut params);
}
let input = &buf[..num_blocks * BLOCKBYTES + extra];
let expected = blake2bp_reference(&input);
let mut state = params.to_state();
let found = state.update(input).finalize();
assert_eq!(expected, found);
// Then, do it again, but buffer 1 byte of input first. That causes the buffering
// branch to trigger.
let mut state = params.to_state();
let maybe_one = cmp::min(1, input.len());
state.update(&input[..maybe_one]);
assert_eq!(maybe_one as Count, state.count());
// Do a throwaway finalize here to check for idempotency.
state.finalize();
state.update(&input[maybe_one..]);
assert_eq!(input.len() as Count, state.count());
let found = state.finalize();
assert_eq!(expected, found);
// Finally, do it again with the all-at-once interface.
assert_eq!(expected, blake2bp(input));
}
}
}
}
}