halo2_proofs/plonk/
verifier.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
use ff::Field;
use group::Curve;
use rand_core::RngCore;
use std::iter;

use super::{
    vanishing, ChallengeBeta, ChallengeGamma, ChallengeTheta, ChallengeX, ChallengeY, Error,
    VerifyingKey,
};
use crate::arithmetic::{CurveAffine, FieldExt};
use crate::poly::{
    commitment::{Blind, Guard, Params, MSM},
    multiopen::{self, VerifierQuery},
};
use crate::transcript::{read_n_points, read_n_scalars, EncodedChallenge, TranscriptRead};

/// Trait representing a strategy for verifying Halo 2 proofs.
pub trait VerificationStrategy<'params, C: CurveAffine> {
    /// The output type of this verification strategy after processing a proof.
    type Output;

    /// Obtains an MSM from the verifier strategy and yields back the strategy's
    /// output.
    fn process<E: EncodedChallenge<C>>(
        self,
        f: impl FnOnce(MSM<'params, C>) -> Result<Guard<'params, C, E>, Error>,
    ) -> Result<Self::Output, Error>;
}

/// A verifier that checks a single proof at a time.
#[derive(Debug)]
pub struct SingleVerifier<'params, C: CurveAffine> {
    msm: MSM<'params, C>,
}

impl<'params, C: CurveAffine> SingleVerifier<'params, C> {
    /// Constructs a new single proof verifier.
    pub fn new(params: &'params Params<C>) -> Self {
        SingleVerifier {
            msm: MSM::new(params),
        }
    }
}

impl<'params, C: CurveAffine> VerificationStrategy<'params, C> for SingleVerifier<'params, C> {
    type Output = ();

    fn process<E: EncodedChallenge<C>>(
        self,
        f: impl FnOnce(MSM<'params, C>) -> Result<Guard<'params, C, E>, Error>,
    ) -> Result<Self::Output, Error> {
        let guard = f(self.msm)?;
        let msm = guard.use_challenges();
        if msm.eval() {
            Ok(())
        } else {
            Err(Error::ConstraintSystemFailure)
        }
    }
}

/// A verifier that checks multiple proofs in a batch.
#[derive(Debug)]
pub struct BatchVerifier<'params, C: CurveAffine, R: RngCore> {
    msm: MSM<'params, C>,
    rng: R,
}

impl<'params, C: CurveAffine, R: RngCore> BatchVerifier<'params, C, R> {
    /// Constructs a new batch verifier.
    pub fn new(params: &'params Params<C>, rng: R) -> Self {
        BatchVerifier {
            msm: MSM::new(params),
            rng,
        }
    }

    /// Finalizes the batch and checks its validity.
    ///
    /// Returns `false` if *some* proof was invalid. If the caller needs to identify
    /// specific failing proofs, it must re-process the proofs separately.
    #[must_use]
    pub fn finalize(self) -> bool {
        self.msm.eval()
    }
}

impl<'params, C: CurveAffine, R: RngCore> VerificationStrategy<'params, C>
    for BatchVerifier<'params, C, R>
{
    type Output = Self;

    fn process<E: EncodedChallenge<C>>(
        mut self,
        f: impl FnOnce(MSM<'params, C>) -> Result<Guard<'params, C, E>, Error>,
    ) -> Result<Self::Output, Error> {
        // Scale the MSM by a random factor to ensure that if the existing MSM
        // has is_zero() == false then this argument won't be able to interfere
        // with it to make it true, with high probability.
        self.msm.scale(C::Scalar::random(&mut self.rng));

        let guard = f(self.msm)?;
        let msm = guard.use_challenges();
        Ok(Self { msm, rng: self.rng })
    }
}

/// Returns a boolean indicating whether or not the proof is valid
pub fn verify_proof<
    'params,
    C: CurveAffine,
    E: EncodedChallenge<C>,
    T: TranscriptRead<C, E>,
    V: VerificationStrategy<'params, C>,
>(
    params: &'params Params<C>,
    vk: &VerifyingKey<C>,
    strategy: V,
    instances: &[&[&[C::Scalar]]],
    transcript: &mut T,
) -> Result<V::Output, Error> {
    // Check that instances matches the expected number of instance columns
    for instances in instances.iter() {
        if instances.len() != vk.cs.num_instance_columns {
            return Err(Error::InvalidInstances);
        }
    }

    let instance_commitments = instances
        .iter()
        .map(|instance| {
            instance
                .iter()
                .map(|instance| {
                    if instance.len() > params.n as usize - (vk.cs.blinding_factors() + 1) {
                        return Err(Error::InstanceTooLarge);
                    }
                    let mut poly = instance.to_vec();
                    poly.resize(params.n as usize, C::Scalar::zero());
                    let poly = vk.domain.lagrange_from_vec(poly);

                    Ok(params.commit_lagrange(&poly, Blind::default()).to_affine())
                })
                .collect::<Result<Vec<_>, _>>()
        })
        .collect::<Result<Vec<_>, _>>()?;

    let num_proofs = instance_commitments.len();

    // Hash verification key into transcript
    vk.hash_into(transcript)?;

    for instance_commitments in instance_commitments.iter() {
        // Hash the instance (external) commitments into the transcript
        for commitment in instance_commitments {
            transcript.common_point(*commitment)?
        }
    }

    let advice_commitments = (0..num_proofs)
        .map(|_| -> Result<Vec<_>, _> {
            // Hash the prover's advice commitments into the transcript
            read_n_points(transcript, vk.cs.num_advice_columns)
        })
        .collect::<Result<Vec<_>, _>>()?;

    // Sample theta challenge for keeping lookup columns linearly independent
    let theta: ChallengeTheta<_> = transcript.squeeze_challenge_scalar();

    let lookups_permuted = (0..num_proofs)
        .map(|_| -> Result<Vec<_>, _> {
            // Hash each lookup permuted commitment
            vk.cs
                .lookups
                .iter()
                .map(|argument| argument.read_permuted_commitments(transcript))
                .collect::<Result<Vec<_>, _>>()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // Sample beta challenge
    let beta: ChallengeBeta<_> = transcript.squeeze_challenge_scalar();

    // Sample gamma challenge
    let gamma: ChallengeGamma<_> = transcript.squeeze_challenge_scalar();

    let permutations_committed = (0..num_proofs)
        .map(|_| {
            // Hash each permutation product commitment
            vk.cs.permutation.read_product_commitments(vk, transcript)
        })
        .collect::<Result<Vec<_>, _>>()?;

    let lookups_committed = lookups_permuted
        .into_iter()
        .map(|lookups| {
            // Hash each lookup product commitment
            lookups
                .into_iter()
                .map(|lookup| lookup.read_product_commitment(transcript))
                .collect::<Result<Vec<_>, _>>()
        })
        .collect::<Result<Vec<_>, _>>()?;

    let vanishing = vanishing::Argument::read_commitments_before_y(transcript)?;

    // Sample y challenge, which keeps the gates linearly independent.
    let y: ChallengeY<_> = transcript.squeeze_challenge_scalar();

    let vanishing = vanishing.read_commitments_after_y(vk, transcript)?;

    // Sample x challenge, which is used to ensure the circuit is
    // satisfied with high probability.
    let x: ChallengeX<_> = transcript.squeeze_challenge_scalar();
    let instance_evals = (0..num_proofs)
        .map(|_| -> Result<Vec<_>, _> { read_n_scalars(transcript, vk.cs.instance_queries.len()) })
        .collect::<Result<Vec<_>, _>>()?;

    let advice_evals = (0..num_proofs)
        .map(|_| -> Result<Vec<_>, _> { read_n_scalars(transcript, vk.cs.advice_queries.len()) })
        .collect::<Result<Vec<_>, _>>()?;

    let fixed_evals = read_n_scalars(transcript, vk.cs.fixed_queries.len())?;

    let vanishing = vanishing.evaluate_after_x(transcript)?;

    let permutations_common = vk.permutation.evaluate(transcript)?;

    let permutations_evaluated = permutations_committed
        .into_iter()
        .map(|permutation| permutation.evaluate(transcript))
        .collect::<Result<Vec<_>, _>>()?;

    let lookups_evaluated = lookups_committed
        .into_iter()
        .map(|lookups| -> Result<Vec<_>, _> {
            lookups
                .into_iter()
                .map(|lookup| lookup.evaluate(transcript))
                .collect::<Result<Vec<_>, _>>()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // This check ensures the circuit is satisfied so long as the polynomial
    // commitments open to the correct values.
    let vanishing = {
        // x^n
        let xn = x.pow(&[params.n as u64, 0, 0, 0]);

        let blinding_factors = vk.cs.blinding_factors();
        let l_evals = vk
            .domain
            .l_i_range(*x, xn, (-((blinding_factors + 1) as i32))..=0);
        assert_eq!(l_evals.len(), 2 + blinding_factors);
        let l_last = l_evals[0];
        let l_blind: C::Scalar = l_evals[1..(1 + blinding_factors)]
            .iter()
            .fold(C::Scalar::zero(), |acc, eval| acc + eval);
        let l_0 = l_evals[1 + blinding_factors];

        // Compute the expected value of h(x)
        let expressions = advice_evals
            .iter()
            .zip(instance_evals.iter())
            .zip(permutations_evaluated.iter())
            .zip(lookups_evaluated.iter())
            .flat_map(|(((advice_evals, instance_evals), permutation), lookups)| {
                let fixed_evals = &fixed_evals;
                std::iter::empty()
                    // Evaluate the circuit using the custom gates provided
                    .chain(vk.cs.gates.iter().flat_map(move |gate| {
                        gate.polynomials().iter().map(move |poly| {
                            poly.evaluate(
                                &|scalar| scalar,
                                &|_| panic!("virtual selectors are removed during optimization"),
                                &|index, _, _| fixed_evals[index],
                                &|index, _, _| advice_evals[index],
                                &|index, _, _| instance_evals[index],
                                &|a| -a,
                                &|a, b| a + &b,
                                &|a, b| a * &b,
                                &|a, scalar| a * &scalar,
                            )
                        })
                    }))
                    .chain(permutation.expressions(
                        vk,
                        &vk.cs.permutation,
                        &permutations_common,
                        advice_evals,
                        fixed_evals,
                        instance_evals,
                        l_0,
                        l_last,
                        l_blind,
                        beta,
                        gamma,
                        x,
                    ))
                    .chain(
                        lookups
                            .iter()
                            .zip(vk.cs.lookups.iter())
                            .flat_map(move |(p, argument)| {
                                p.expressions(
                                    l_0,
                                    l_last,
                                    l_blind,
                                    argument,
                                    theta,
                                    beta,
                                    gamma,
                                    advice_evals,
                                    fixed_evals,
                                    instance_evals,
                                )
                            })
                            .into_iter(),
                    )
            });

        vanishing.verify(params, expressions, y, xn)
    };

    let queries = instance_commitments
        .iter()
        .zip(instance_evals.iter())
        .zip(advice_commitments.iter())
        .zip(advice_evals.iter())
        .zip(permutations_evaluated.iter())
        .zip(lookups_evaluated.iter())
        .flat_map(
            |(
                (
                    (((instance_commitments, instance_evals), advice_commitments), advice_evals),
                    permutation,
                ),
                lookups,
            )| {
                iter::empty()
                    .chain(vk.cs.instance_queries.iter().enumerate().map(
                        move |(query_index, &(column, at))| {
                            VerifierQuery::new_commitment(
                                &instance_commitments[column.index()],
                                vk.domain.rotate_omega(*x, at),
                                instance_evals[query_index],
                            )
                        },
                    ))
                    .chain(vk.cs.advice_queries.iter().enumerate().map(
                        move |(query_index, &(column, at))| {
                            VerifierQuery::new_commitment(
                                &advice_commitments[column.index()],
                                vk.domain.rotate_omega(*x, at),
                                advice_evals[query_index],
                            )
                        },
                    ))
                    .chain(permutation.queries(vk, x))
                    .chain(
                        lookups
                            .iter()
                            .flat_map(move |p| p.queries(vk, x))
                            .into_iter(),
                    )
            },
        )
        .chain(
            vk.cs
                .fixed_queries
                .iter()
                .enumerate()
                .map(|(query_index, &(column, at))| {
                    VerifierQuery::new_commitment(
                        &vk.fixed_commitments[column.index()],
                        vk.domain.rotate_omega(*x, at),
                        fixed_evals[query_index],
                    )
                }),
        )
        .chain(permutations_common.queries(&vk.permutation, x))
        .chain(vanishing.queries(x));

    // We are now convinced the circuit is satisfied so long as the
    // polynomial commitments open to the correct values.
    strategy.process(|msm| {
        multiopen::verify_proof(params, transcript, queries, msm).map_err(|_| Error::Opening)
    })
}