strength_reduce/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
//! `strength_reduce` implements integer division and modulo via "arithmetic strength reduction"
//!
//! Modern processors can do multiplication and shifts much faster than division, and "arithmetic strength reduction" is an algorithm to transform divisions into multiplications and shifts.
//! Compilers already perform this optimization for divisors that are known at compile time; this library enables this optimization for divisors that are only known at runtime.
//!
//! Benchmarking shows a 5-10x speedup or integer division and modulo operations.
//!
//! # Example:
//! ```
//! use strength_reduce::StrengthReducedU64;
//!
//! let mut my_array: Vec<u64> = (0..500).collect();
//! let divisor = 3;
//! let modulo = 14;
//!
//! // slow naive division and modulo
//! for element in &mut my_array {
//! *element = (*element / divisor) % modulo;
//! }
//!
//! // fast strength-reduced division and modulo
//! let reduced_divisor = StrengthReducedU64::new(divisor);
//! let reduced_modulo = StrengthReducedU64::new(modulo);
//! for element in &mut my_array {
//! *element = (*element / reduced_divisor) % reduced_modulo;
//! }
//! ```
//!
//! This library is intended for hot loops like the example above, where a division is repeated many times in a loop with the divisor remaining unchanged.
//! There is a setup cost associated with creating stength-reduced division instances, so using strength-reduced division for 1-2 divisions is not worth the setup cost.
//! The break-even point differs by use-case, but is typically low: Benchmarking has shown that takes 3 to 4 repeated divisions with the same StengthReduced## instance to be worth it.
//!
//! `strength_reduce` is `#![no_std]`
//!
//! The optimizations that this library provides are inherently dependent on architecture, compiler, and platform,
//! so test before you use.
#![no_std]
#[cfg(test)]
extern crate num_bigint;
#[cfg(test)]
extern crate rand;
use core::ops::{Div, Rem};
mod long_division;
mod long_multiplication;
/// Implements unsigned division and modulo via mutiplication and shifts.
///
/// Creating a an instance of this struct is more expensive than a single division, but if the division is repeated,
/// this version will be several times faster than naive division.
#[derive(Clone, Copy, Debug)]
pub struct StrengthReducedU8 {
multiplier: u16,
divisor: u8,
}
impl StrengthReducedU8 {
/// Creates a new divisor instance.
///
/// If possible, avoid calling new() from an inner loop: The intended usage is to create an instance of this struct outside the loop, and use it for divison and remainders inside the loop.
///
/// # Panics:
///
/// Panics if `divisor` is 0
#[inline]
pub fn new(divisor: u8) -> Self {
assert!(divisor > 0);
if divisor.is_power_of_two() {
Self{ multiplier: 0, divisor }
} else {
let divided = core::u16::MAX / (divisor as u16);
Self{ multiplier: divided + 1, divisor }
}
}
/// Simultaneous truncated integer division and modulus.
/// Returns `(quotient, remainder)`.
#[inline]
pub fn div_rem(numerator: u8, denom: Self) -> (u8, u8) {
let quotient = numerator / denom;
let remainder = numerator % denom;
(quotient, remainder)
}
/// Retrieve the value used to create this struct
#[inline]
pub fn get(&self) -> u8 {
self.divisor
}
}
impl Div<StrengthReducedU8> for u8 {
type Output = u8;
#[inline]
fn div(self, rhs: StrengthReducedU8) -> Self::Output {
if rhs.multiplier == 0 {
(self as u16 >> rhs.divisor.trailing_zeros()) as u8
} else {
let numerator = self as u16;
let multiplied_hi = numerator * (rhs.multiplier >> 8);
let multiplied_lo = (numerator * rhs.multiplier as u8 as u16) >> 8;
((multiplied_hi + multiplied_lo) >> 8) as u8
}
}
}
impl Rem<StrengthReducedU8> for u8 {
type Output = u8;
#[inline]
fn rem(self, rhs: StrengthReducedU8) -> Self::Output {
if rhs.multiplier == 0 {
self & (rhs.divisor - 1)
} else {
let product = rhs.multiplier.wrapping_mul(self as u16) as u32;
let divisor = rhs.divisor as u32;
let shifted = (product * divisor) >> 16;
shifted as u8
}
}
}
// small types prefer to do work in the intermediate type
macro_rules! strength_reduced_u16 {
($struct_name:ident, $primitive_type:ident) => (
/// Implements unsigned division and modulo via mutiplication and shifts.
///
/// Creating a an instance of this struct is more expensive than a single division, but if the division is repeated,
/// this version will be several times faster than naive division.
#[derive(Clone, Copy, Debug)]
pub struct $struct_name {
multiplier: u32,
divisor: $primitive_type,
}
impl $struct_name {
/// Creates a new divisor instance.
///
/// If possible, avoid calling new() from an inner loop: The intended usage is to create an instance of this struct outside the loop, and use it for divison and remainders inside the loop.
///
/// # Panics:
///
/// Panics if `divisor` is 0
#[inline]
pub fn new(divisor: $primitive_type) -> Self {
assert!(divisor > 0);
if divisor.is_power_of_two() {
Self{ multiplier: 0, divisor }
} else {
let divided = core::u32::MAX / (divisor as u32);
Self{ multiplier: divided + 1, divisor }
}
}
/// Simultaneous truncated integer division and modulus.
/// Returns `(quotient, remainder)`.
#[inline]
pub fn div_rem(numerator: $primitive_type, denom: Self) -> ($primitive_type, $primitive_type) {
let quotient = numerator / denom;
let remainder = numerator - quotient * denom.divisor;
(quotient, remainder)
}
/// Retrieve the value used to create this struct
#[inline]
pub fn get(&self) -> $primitive_type {
self.divisor
}
}
impl Div<$struct_name> for $primitive_type {
type Output = $primitive_type;
#[inline]
fn div(self, rhs: $struct_name) -> Self::Output {
if rhs.multiplier == 0 {
self >> rhs.divisor.trailing_zeros()
} else {
let numerator = self as u32;
let multiplied_hi = numerator * (rhs.multiplier >> 16);
let multiplied_lo = (numerator * rhs.multiplier as u16 as u32) >> 16;
((multiplied_hi + multiplied_lo) >> 16) as $primitive_type
}
}
}
impl Rem<$struct_name> for $primitive_type {
type Output = $primitive_type;
#[inline]
fn rem(self, rhs: $struct_name) -> Self::Output {
if rhs.multiplier == 0 {
self & (rhs.divisor - 1)
} else {
let quotient = self / rhs;
self - quotient * rhs.divisor
}
}
}
)
}
// small types prefer to do work in the intermediate type
macro_rules! strength_reduced_u32 {
($struct_name:ident, $primitive_type:ident) => (
/// Implements unsigned division and modulo via mutiplication and shifts.
///
/// Creating a an instance of this struct is more expensive than a single division, but if the division is repeated,
/// this version will be several times faster than naive division.
#[derive(Clone, Copy, Debug)]
pub struct $struct_name {
multiplier: u64,
divisor: $primitive_type,
}
impl $struct_name {
/// Creates a new divisor instance.
///
/// If possible, avoid calling new() from an inner loop: The intended usage is to create an instance of this struct outside the loop, and use it for divison and remainders inside the loop.
///
/// # Panics:
///
/// Panics if `divisor` is 0
#[inline]
pub fn new(divisor: $primitive_type) -> Self {
assert!(divisor > 0);
if divisor.is_power_of_two() {
Self{ multiplier: 0, divisor }
} else {
let divided = core::u64::MAX / (divisor as u64);
Self{ multiplier: divided + 1, divisor }
}
}
/// Simultaneous truncated integer division and modulus.
/// Returns `(quotient, remainder)`.
#[inline]
pub fn div_rem(numerator: $primitive_type, denom: Self) -> ($primitive_type, $primitive_type) {
if denom.multiplier == 0 {
(numerator >> denom.divisor.trailing_zeros(), numerator & (denom.divisor - 1))
}
else {
let numerator64 = numerator as u64;
let multiplied_hi = numerator64 * (denom.multiplier >> 32);
let multiplied_lo = numerator64 * (denom.multiplier as u32 as u64) >> 32;
let quotient = ((multiplied_hi + multiplied_lo) >> 32) as $primitive_type;
let remainder = numerator - quotient * denom.divisor;
(quotient, remainder)
}
}
/// Retrieve the value used to create this struct
#[inline]
pub fn get(&self) -> $primitive_type {
self.divisor
}
}
impl Div<$struct_name> for $primitive_type {
type Output = $primitive_type;
#[inline]
fn div(self, rhs: $struct_name) -> Self::Output {
if rhs.multiplier == 0 {
self >> rhs.divisor.trailing_zeros()
} else {
let numerator = self as u64;
let multiplied_hi = numerator * (rhs.multiplier >> 32);
let multiplied_lo = numerator * (rhs.multiplier as u32 as u64) >> 32;
((multiplied_hi + multiplied_lo) >> 32) as $primitive_type
}
}
}
impl Rem<$struct_name> for $primitive_type {
type Output = $primitive_type;
#[inline]
fn rem(self, rhs: $struct_name) -> Self::Output {
if rhs.multiplier == 0 {
self & (rhs.divisor - 1)
} else {
let product = rhs.multiplier.wrapping_mul(self as u64) as u128;
let divisor = rhs.divisor as u128;
let shifted = (product * divisor) >> 64;
shifted as $primitive_type
}
}
}
)
}
macro_rules! strength_reduced_u64 {
($struct_name:ident, $primitive_type:ident) => (
/// Implements unsigned division and modulo via mutiplication and shifts.
///
/// Creating a an instance of this struct is more expensive than a single division, but if the division is repeated,
/// this version will be several times faster than naive division.
#[derive(Clone, Copy, Debug)]
pub struct $struct_name {
multiplier: u128,
divisor: $primitive_type,
}
impl $struct_name {
/// Creates a new divisor instance.
///
/// If possible, avoid calling new() from an inner loop: The intended usage is to create an instance of this struct outside the loop, and use it for divison and remainders inside the loop.
///
/// # Panics:
///
/// Panics if `divisor` is 0
#[inline]
pub fn new(divisor: $primitive_type) -> Self {
assert!(divisor > 0);
if divisor.is_power_of_two() {
Self{ multiplier: 0, divisor }
} else {
let quotient = long_division::divide_128_max_by_64(divisor as u64);
Self{ multiplier: quotient + 1, divisor }
}
}
/// Simultaneous truncated integer division and modulus.
/// Returns `(quotient, remainder)`.
#[inline]
pub fn div_rem(numerator: $primitive_type, denom: Self) -> ($primitive_type, $primitive_type) {
if denom.multiplier == 0 {
(numerator >> denom.divisor.trailing_zeros(), numerator & (denom.divisor - 1))
}
else {
let numerator128 = numerator as u128;
let multiplied_hi = numerator128 * (denom.multiplier >> 64);
let multiplied_lo = numerator128 * (denom.multiplier as u64 as u128) >> 64;
let quotient = ((multiplied_hi + multiplied_lo) >> 64) as $primitive_type;
let remainder = numerator - quotient * denom.divisor;
(quotient, remainder)
}
}
/// Retrieve the value used to create this struct
#[inline]
pub fn get(&self) -> $primitive_type {
self.divisor
}
}
impl Div<$struct_name> for $primitive_type {
type Output = $primitive_type;
#[inline]
fn div(self, rhs: $struct_name) -> Self::Output {
if rhs.multiplier == 0 {
self >> rhs.divisor.trailing_zeros()
} else {
let numerator = self as u128;
let multiplied_hi = numerator * (rhs.multiplier >> 64);
let multiplied_lo = numerator * (rhs.multiplier as u64 as u128) >> 64;
((multiplied_hi + multiplied_lo) >> 64) as $primitive_type
}
}
}
impl Rem<$struct_name> for $primitive_type {
type Output = $primitive_type;
#[inline]
fn rem(self, rhs: $struct_name) -> Self::Output {
if rhs.multiplier == 0 {
self & (rhs.divisor - 1)
} else {
let quotient = self / rhs;
self - quotient * rhs.divisor
}
}
}
)
}
/// Implements unsigned division and modulo via mutiplication and shifts.
///
/// Creating a an instance of this struct is more expensive than a single division, but if the division is repeated,
/// this version will be several times faster than naive division.
#[derive(Clone, Copy, Debug)]
pub struct StrengthReducedU128 {
multiplier_hi: u128,
multiplier_lo: u128,
divisor: u128,
}
impl StrengthReducedU128 {
/// Creates a new divisor instance.
///
/// If possible, avoid calling new() from an inner loop: The intended usage is to create an instance of this struct outside the loop, and use it for divison and remainders inside the loop.
///
/// # Panics:
///
/// Panics if `divisor` is 0
#[inline]
pub fn new(divisor: u128) -> Self {
assert!(divisor > 0);
if divisor.is_power_of_two() {
Self{ multiplier_hi: 0, multiplier_lo: 0, divisor }
} else {
let (quotient_hi, quotient_lo) = long_division::divide_256_max_by_128(divisor);
let multiplier_lo = quotient_lo.wrapping_add(1);
let multiplier_hi = if multiplier_lo == 0 { quotient_hi + 1 } else { quotient_hi };
Self{ multiplier_hi, multiplier_lo, divisor }
}
}
/// Simultaneous truncated integer division and modulus.
/// Returns `(quotient, remainder)`.
#[inline]
pub fn div_rem(numerator: u128, denom: Self) -> (u128, u128) {
let quotient = numerator / denom;
let remainder = numerator - quotient * denom.divisor;
(quotient, remainder)
}
/// Retrieve the value used to create this struct
#[inline]
pub fn get(&self) -> u128 {
self.divisor
}
}
impl Div<StrengthReducedU128> for u128 {
type Output = u128;
#[inline]
fn div(self, rhs: StrengthReducedU128) -> Self::Output {
if rhs.multiplier_hi == 0 {
self >> rhs.divisor.trailing_zeros()
} else {
long_multiplication::multiply_256_by_128_upperbits(rhs.multiplier_hi, rhs.multiplier_lo, self)
}
}
}
impl Rem<StrengthReducedU128> for u128 {
type Output = u128;
#[inline]
fn rem(self, rhs: StrengthReducedU128) -> Self::Output {
if rhs.multiplier_hi == 0 {
self & (rhs.divisor - 1)
} else {
let quotient = long_multiplication::multiply_256_by_128_upperbits(rhs.multiplier_hi, rhs.multiplier_lo, self);
self - quotient * rhs.divisor
}
}
}
// We just hardcoded u8 and u128 since they will never be a usize. for the rest, we have macros, so we can reuse the same code for usize
strength_reduced_u16!(StrengthReducedU16, u16);
strength_reduced_u32!(StrengthReducedU32, u32);
strength_reduced_u64!(StrengthReducedU64, u64);
// Our definition for usize will depend on how big usize is
#[cfg(target_pointer_width = "16")]
strength_reduced_u16!(StrengthReducedUsize, usize);
#[cfg(target_pointer_width = "32")]
strength_reduced_u32!(StrengthReducedUsize, usize);
#[cfg(target_pointer_width = "64")]
strength_reduced_u64!(StrengthReducedUsize, usize);
#[cfg(test)]
mod unit_tests {
use super::*;
macro_rules! reduction_test {
($test_name:ident, $struct_name:ident, $primitive_type:ident) => (
#[test]
fn $test_name() {
let max = core::$primitive_type::MAX;
let divisors = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,max-1,max];
let numerators = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20];
for &divisor in &divisors {
let reduced_divisor = $struct_name::new(divisor);
for &numerator in &numerators {
let expected_div = numerator / divisor;
let expected_rem = numerator % divisor;
let reduced_div = numerator / reduced_divisor;
assert_eq!(expected_div, reduced_div, "Divide failed with numerator: {}, divisor: {}", numerator, divisor);
let reduced_rem = numerator % reduced_divisor;
let (reduced_combined_div, reduced_combined_rem) = $struct_name::div_rem(numerator, reduced_divisor);
assert_eq!(expected_rem, reduced_rem, "Modulo failed with numerator: {}, divisor: {}", numerator, divisor);
assert_eq!(expected_div, reduced_combined_div, "div_rem divide failed with numerator: {}, divisor: {}", numerator, divisor);
assert_eq!(expected_rem, reduced_combined_rem, "div_rem modulo failed with numerator: {}, divisor: {}", numerator, divisor);
}
}
}
)
}
reduction_test!(test_strength_reduced_u8, StrengthReducedU8, u8);
reduction_test!(test_strength_reduced_u16, StrengthReducedU16, u16);
reduction_test!(test_strength_reduced_u32, StrengthReducedU32, u32);
reduction_test!(test_strength_reduced_u64, StrengthReducedU64, u64);
reduction_test!(test_strength_reduced_usize, StrengthReducedUsize, usize);
reduction_test!(test_strength_reduced_u128, StrengthReducedU128, u128);
}