metrics/cow.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
use std::{
borrow::Borrow,
cmp::Ordering,
fmt,
hash::{Hash, Hasher},
marker::PhantomData,
mem::ManuallyDrop,
ops::Deref,
ptr::{slice_from_raw_parts, NonNull},
sync::Arc,
};
#[derive(Clone, Copy)]
enum Kind {
Owned,
Borrowed,
Shared,
}
/// A clone-on-write smart pointer with an optimized memory layout, based on `beef`.
///
/// # Strings, strings everywhere
///
/// In `metrics`, strings are arguably the most common data type used despite the fact that metrics
/// are measuring numerical values. Both the name of a metric, and its labels, are strings: emitting
/// a metric may involve one string, or 10 strings. Many of these strings tend to be used over and
/// over during the life of the process, as well.
///
/// In order to achieve and maintain a high level of performance, we use a "clone-on-write" smart
/// pointer to handle passing these strings around. Doing so allows us to potentially avoid having
/// to allocate entire copies of a string, instead using a lightweight smart pointer that can live
/// on the stack.
///
/// # Why not `std::borrow::Cow`?
///
/// The standard library already provides a clone-on-write smart pointer, `std::borrow::Cow`, which
/// works well in many cases. However, `metrics` strives to provide minimal overhead where possible,
/// and so `std::borrow::Cow` falls down in one particular way: it uses an enum representation which
/// consumes an additional word of storage.
///
/// As an example, let's look at strings. A string in `std::borrow::Cow` implies that `T` is `str`,
/// and the owned version of `str` is simply `String`. Thus, for `std::borrow::Cow`, the in-memory
/// layout looks like this:
///
/// ```text
/// Padding
/// |
/// v
/// +--------------+-------------+--------------+--------------+
/// stdlib Cow::Borrowed: | Enum Tag | Pointer | Length | XXXXXXXX |
/// +--------------+-------------+--------------+--------------+
/// +--------------+-------------+--------------+--------------+
/// stdlib Cow::Owned: | Enum Tag | Pointer | Length | Capacity |
/// +--------------+-------------+--------------+--------------+
/// ```
///
/// As you can see, you pay a memory size penalty to be able to wrap an owned string. This
/// additional word adds minimal overhead, but we can easily avoid it with some clever logic around
/// the values of the length and capacity fields.
///
/// There is an existing crate that does just that: `beef`. Instead of using an enum, it is simply a
/// struct that encodes the discriminant values in the length and capacity fields directly. If we're
/// wrapping a borrowed value, we can infer that the "capacity" will always be zero, as we only need
/// to track the capacity when we're wrapping an owned value, in order to be able to recreate the
/// underlying storage when consuming the smart pointer, or dropping it. Instead of the above
/// layout, `beef` looks like this:
///
/// ```text
/// +-------------+--------------+----------------+
/// `beef` Cow (borrowed): | Pointer | Length (N) | Capacity (0) |
/// +-------------+--------------+----------------+
/// +-------------+--------------+----------------+
/// `beef` Cow (owned): | Pointer | Length (N) | Capacity (M) |
/// +-------------+--------------+----------------+
/// ```
///
/// # Why not `beef`?
///
/// Up until this point, it might not be clear why we didn't just use `beef`. In truth, our design
/// is fundamentally based on `beef`. Crucially, however, `beef` did not/still does not support
/// `const` construction for generic slices. Remember how we mentioned labels? The labels of a
/// metric `are `[Label]` under-the-hood, and so without a way to construct them in a `const`
/// fashion, our previous work to allow entirely static keys would not be possible.
///
/// Thus, we forked `beef` and copied into directly into `metrics` so that we could write a
/// specialized `const` constructor for `[Label]`.
///
/// This is why we have our own `Cow` bundled into `metrics` directly, which is based on `beef`. In
/// doing so, we can experiment with more interesting optimizations, and, as mentioned above, we can
/// add const methods to support all of the types involved in statically building metrics keys.
///
/// # What we do that `beef` doesn't do
///
/// It was already enough to use our own implementation for the specialized `const` capabilities,
/// but we've taken things even further in a key way: support for `Arc`-wrapped values.
///
/// ## `Arc`-wrapped values
///
/// For many strings, there is still a desire to share them cheaply even when they are constructed
/// at run-time. Remember, cloning a `Cow` of an owned value means cloning the value itself, so we
/// need another level of indirection to allow the cheap sharing, which is where `Arc<T>` can
/// provide value.
///
/// Users can construct a `Arc<T>`, where `T` is lined up with the `T` of `metrics::Cow`, and use
/// that as the initial value instead. When `Cow` is cloned, we end up cloning the underlying
/// `Arc<T>` instead, avoiding a new allocation. `Arc<T>` still handles all of the normal logic
/// necessary to know when the wrapped value must be dropped, and how many live references to the
/// value that there are, and so on.
///
/// We handle this by relying on an invariant of `Vec<T>`: it never allocates more than `isize::MAX`
/// [1]. This lets us derive the following truth table of the valid combinations of length/capacity:
///
/// ```text
/// Length (N) Capacity (M)
/// +---------------+----------------+
/// Borrowed (&T): | N | 0 |
/// +---------------+----------------+
/// Owned (T::ToOwned): | N | M < usize::MAX |
/// +---------------+----------------+
/// Shared (Arc<T>): | N | usize::MAX |
/// +---------------+----------------+
/// ```
///
/// As we only implement `Cow` for types where their owned variants are either explicitly or
/// implicitly backed by `Vec<_>`, we know that our capacity will never be `usize::MAX`, as it is
/// limited to `isize::MAX`, and thus we can safely encode our "shared" state within the capacity
/// field.
///
/// # Notes
///
/// [1] - technically, `Vec<T>` can have a capacity greater than `isize::MAX` when storing
/// zero-sized types, but we don't do that here, so we always enforce that an owned version's
/// capacity cannot be `usize::MAX` when constructing `Cow`.
pub struct Cow<'a, T: Cowable + ?Sized + 'a> {
ptr: NonNull<T::Pointer>,
metadata: Metadata,
_lifetime: PhantomData<&'a T>,
}
impl<T> Cow<'_, T>
where
T: Cowable + ?Sized,
{
fn from_parts(ptr: NonNull<T::Pointer>, metadata: Metadata) -> Self {
Self { ptr, metadata, _lifetime: PhantomData }
}
/// Creates a pointer to an owned value, consuming it.
pub fn from_owned(owned: T::Owned) -> Self {
let (ptr, metadata) = T::owned_into_parts(owned);
// This check is partially to guard against the semantics of `Vec<T>` changing in the
// future, and partially to ensure that we don't somehow implement `Cowable` for a type
// where its owned version is backed by a vector of ZSTs, where the capacity could
// _legitimately_ be `usize::MAX`.
if metadata.capacity() == usize::MAX {
panic!("Invalid capacity of `usize::MAX` for owned value.");
}
Self::from_parts(ptr, metadata)
}
/// Creates a pointer to a shared value.
pub fn from_shared(arc: Arc<T>) -> Self {
let (ptr, metadata) = T::shared_into_parts(arc);
Self::from_parts(ptr, metadata)
}
/// Extracts the owned data.
///
/// Clones the data if it is not already owned.
pub fn into_owned(self) -> <T as ToOwned>::Owned {
// We need to ensure that our own `Drop` impl does _not_ run because we're simply
// transferring ownership of the value back to the caller. For borrowed values, this is
// naturally a no-op because there's nothing to drop, but for owned values, like `String` or
// `Arc<T>`, we wouldn't want to double drop.
let cow = ManuallyDrop::new(self);
T::owned_from_parts(cow.ptr, &cow.metadata)
}
}
impl<'a, T> Cow<'a, T>
where
T: Cowable + ?Sized,
{
/// Creates a pointer to a borrowed value.
pub fn from_borrowed(borrowed: &'a T) -> Self {
let (ptr, metadata) = T::borrowed_into_parts(borrowed);
Self::from_parts(ptr, metadata)
}
}
impl<'a, T> Cow<'a, [T]>
where
T: Clone,
{
pub const fn const_slice(val: &'a [T]) -> Cow<'a, [T]> {
// SAFETY: We can never create a null pointer by casting a reference to a pointer.
let ptr = unsafe { NonNull::new_unchecked(val.as_ptr() as *mut _) };
let metadata = Metadata::borrowed(val.len());
Self { ptr, metadata, _lifetime: PhantomData }
}
}
impl<'a> Cow<'a, str> {
pub const fn const_str(val: &'a str) -> Self {
// SAFETY: We can never create a null pointer by casting a reference to a pointer.
let ptr = unsafe { NonNull::new_unchecked(val.as_ptr() as *mut _) };
let metadata = Metadata::borrowed(val.len());
Self { ptr, metadata, _lifetime: PhantomData }
}
}
impl<T> Deref for Cow<'_, T>
where
T: Cowable + ?Sized,
{
type Target = T;
fn deref(&self) -> &Self::Target {
let borrowed_ptr = T::borrowed_from_parts(self.ptr, &self.metadata);
// SAFETY: We only ever hold a pointer to a borrowed value of at least the lifetime of
// `Self`, or an owned value which we have ownership of (albeit indirectly when using
// `Arc<T>`), so our pointer is always valid and live for derefencing.
unsafe { borrowed_ptr.as_ref().unwrap() }
}
}
impl<T> Clone for Cow<'_, T>
where
T: Cowable + ?Sized,
{
fn clone(&self) -> Self {
let (ptr, metadata) = T::clone_from_parts(self.ptr, &self.metadata);
Self { ptr, metadata, _lifetime: PhantomData }
}
}
impl<T> Drop for Cow<'_, T>
where
T: Cowable + ?Sized,
{
fn drop(&mut self) {
T::drop_from_parts(self.ptr, &self.metadata);
}
}
impl<T> Hash for Cow<'_, T>
where
T: Hash + Cowable + ?Sized,
{
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
self.deref().hash(state)
}
}
impl<'a, T> Default for Cow<'a, T>
where
T: Cowable + ?Sized,
&'a T: Default,
{
#[inline]
fn default() -> Self {
Cow::from_borrowed(Default::default())
}
}
impl<T> Eq for Cow<'_, T> where T: Eq + Cowable + ?Sized {}
impl<A, B> PartialOrd<Cow<'_, B>> for Cow<'_, A>
where
A: Cowable + ?Sized + PartialOrd<B>,
B: Cowable + ?Sized,
{
#[inline]
fn partial_cmp(&self, other: &Cow<'_, B>) -> Option<Ordering> {
PartialOrd::partial_cmp(self.deref(), other.deref())
}
}
impl<T> Ord for Cow<'_, T>
where
T: Ord + Cowable + ?Sized,
{
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
Ord::cmp(self.deref(), other.deref())
}
}
impl<'a, T> From<&'a T> for Cow<'a, T>
where
T: Cowable + ?Sized,
{
#[inline]
fn from(val: &'a T) -> Self {
Cow::from_borrowed(val)
}
}
impl<'a, T> From<Arc<T>> for Cow<'a, T>
where
T: Cowable + ?Sized,
{
#[inline]
fn from(val: Arc<T>) -> Self {
Cow::from_shared(val)
}
}
impl<'a> From<std::borrow::Cow<'a, str>> for Cow<'a, str> {
#[inline]
fn from(s: std::borrow::Cow<'a, str>) -> Self {
match s {
std::borrow::Cow::Borrowed(bs) => Cow::from_borrowed(bs),
std::borrow::Cow::Owned(os) => Cow::from_owned(os),
}
}
}
impl<'a, T: Cowable> From<Cow<'a, T>> for std::borrow::Cow<'a, T> {
#[inline]
fn from(value: Cow<'a, T>) -> Self {
match value.metadata.kind() {
Kind::Owned | Kind::Shared => Self::Owned(value.into_owned()),
Kind::Borrowed => {
// SAFETY: We know the contained data is borrowed from 'a, we're simply
// restoring the original immutable reference and returning a copy of it.
Self::Borrowed(unsafe { &*T::borrowed_from_parts(value.ptr, &value.metadata) })
}
}
}
}
impl From<String> for Cow<'_, str> {
#[inline]
fn from(s: String) -> Self {
Cow::from_owned(s)
}
}
impl<T> From<Vec<T>> for Cow<'_, [T]>
where
T: Clone,
{
#[inline]
fn from(v: Vec<T>) -> Self {
Cow::from_owned(v)
}
}
impl<T> AsRef<T> for Cow<'_, T>
where
T: Cowable + ?Sized,
{
#[inline]
fn as_ref(&self) -> &T {
self.borrow()
}
}
impl<T> Borrow<T> for Cow<'_, T>
where
T: Cowable + ?Sized,
{
#[inline]
fn borrow(&self) -> &T {
self.deref()
}
}
impl<A, B> PartialEq<Cow<'_, B>> for Cow<'_, A>
where
A: Cowable + ?Sized,
B: Cowable + ?Sized,
A: PartialEq<B>,
{
fn eq(&self, other: &Cow<B>) -> bool {
self.deref() == other.deref()
}
}
impl<T> fmt::Debug for Cow<'_, T>
where
T: Cowable + fmt::Debug + ?Sized,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.deref().fmt(f)
}
}
impl<T> fmt::Display for Cow<'_, T>
where
T: Cowable + fmt::Display + ?Sized,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.deref().fmt(f)
}
}
// SAFETY: `NonNull<T>` is not `Send` or `Sync` by default, but we're asserting that `Cow` is so
// long as the underlying `T` is.
unsafe impl<T: Cowable + Sync + ?Sized> Sync for Cow<'_, T> {}
unsafe impl<T: Cowable + Send + ?Sized> Send for Cow<'_, T> {}
#[repr(C)]
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct Metadata(usize, usize);
impl Metadata {
#[inline]
const fn len(&self) -> usize {
self.0
}
#[inline]
const fn capacity(&self) -> usize {
self.1
}
#[inline]
const fn kind(&self) -> Kind {
match (self.0, self.1) {
(_, usize::MAX) => Kind::Shared,
(_, 0) => Kind::Borrowed,
_ => Kind::Owned,
}
}
#[inline]
const fn shared(len: usize) -> Metadata {
Metadata(len, usize::MAX)
}
#[inline]
const fn borrowed(len: usize) -> Metadata {
Metadata(len, 0)
}
#[inline]
const fn owned(len: usize, capacity: usize) -> Metadata {
Metadata(len, capacity)
}
}
pub trait Cowable: ToOwned {
type Pointer;
fn borrowed_into_parts(&self) -> (NonNull<Self::Pointer>, Metadata);
fn owned_into_parts(owned: <Self as ToOwned>::Owned) -> (NonNull<Self::Pointer>, Metadata);
fn shared_into_parts(arc: Arc<Self>) -> (NonNull<Self::Pointer>, Metadata);
fn borrowed_from_parts(ptr: NonNull<Self::Pointer>, metadata: &Metadata) -> *const Self;
fn owned_from_parts(
ptr: NonNull<Self::Pointer>,
metadata: &Metadata,
) -> <Self as ToOwned>::Owned;
fn clone_from_parts(
ptr: NonNull<Self::Pointer>,
metadata: &Metadata,
) -> (NonNull<Self::Pointer>, Metadata);
fn drop_from_parts(ptr: NonNull<Self::Pointer>, metadata: &Metadata);
}
impl Cowable for str {
type Pointer = u8;
#[inline]
fn borrowed_into_parts(&self) -> (NonNull<Self::Pointer>, Metadata) {
// SAFETY: We know that it's safe to take and hold a pointer to a reference to `Self` since
// `Cow` can only live as long as the input reference does, and an invalid pointer cannot
// be taken from a live reference.
let ptr = unsafe { NonNull::new_unchecked(self.as_ptr() as *mut _) };
let metadata = Metadata::borrowed(self.len());
(ptr, metadata)
}
#[inline]
fn owned_into_parts(owned: Self::Owned) -> (NonNull<Self::Pointer>, Metadata) {
// SAFETY: We know that it's safe to take and hold a pointer to a reference to `owned` since
// we own the allocation by virtue of consuming it here without dropping it.
let mut owned = ManuallyDrop::new(owned.into_bytes());
let ptr = unsafe { NonNull::new_unchecked(owned.as_mut_ptr()) };
let metadata = Metadata::owned(owned.len(), owned.capacity());
(ptr, metadata)
}
#[inline]
fn shared_into_parts(arc: Arc<Self>) -> (NonNull<Self::Pointer>, Metadata) {
let metadata = Metadata::shared(arc.len());
// SAFETY: We know that the pointer given back by `Arc::into_raw` is valid.
let ptr = unsafe { NonNull::new_unchecked(Arc::into_raw(arc) as *mut _) };
(ptr, metadata)
}
#[inline]
fn borrowed_from_parts(ptr: NonNull<Self::Pointer>, metadata: &Metadata) -> *const Self {
slice_from_raw_parts(ptr.as_ptr(), metadata.len()) as *const _
}
#[inline]
fn owned_from_parts(
ptr: NonNull<Self::Pointer>,
metadata: &Metadata,
) -> <Self as ToOwned>::Owned {
match metadata.kind() {
Kind::Borrowed => {
// SAFETY: We know that it's safe to take and hold a pointer to a reference to
// `Self` since `Cow` can only live as long as the input reference does, and an
// invalid pointer cannot be taken from a live reference.
let s = unsafe { &*Self::borrowed_from_parts(ptr, metadata) };
s.to_owned()
}
// SAFETY: We know that the pointer is valid because it could have only been constructed
// from a valid `String` handed to `Cow::from_owned`, which we assumed ownership of.
Kind::Owned => unsafe {
String::from_raw_parts(ptr.as_ptr(), metadata.len(), metadata.capacity())
},
Kind::Shared => {
// SAFETY: We know that the pointer is valid because it could have only been
// constructed from a valid `Arc<str>` handed to `Cow::from_shared`, which we
// assumed ownership of, also ensuring that the strong count is at least one.
let s = unsafe { Arc::from_raw(Self::borrowed_from_parts(ptr, metadata)) };
s.to_string()
}
}
}
#[inline]
fn clone_from_parts(
ptr: NonNull<Self::Pointer>,
metadata: &Metadata,
) -> (NonNull<Self::Pointer>, Metadata) {
match metadata.kind() {
Kind::Borrowed => (ptr, *metadata),
Kind::Owned => {
// SAFETY: We know that the pointer is valid because it could have only been constructed
// from a valid `String` handed to `Cow::from_owned`, which we assumed ownership of.
let s = unsafe { &*Self::borrowed_from_parts(ptr, metadata) };
Self::owned_into_parts(s.to_string())
}
Kind::Shared => clone_shared::<Self>(ptr, metadata),
}
}
#[inline]
fn drop_from_parts(ptr: NonNull<Self::Pointer>, metadata: &Metadata) {
match metadata.kind() {
Kind::Borrowed => {}
// SAFETY: We know that the pointer is valid because it could have only been constructed
// from a valid `String` handed to `Cow::from_owned`, which we assumed ownership of.
Kind::Owned => unsafe {
drop(Vec::from_raw_parts(ptr.as_ptr(), metadata.len(), metadata.capacity()));
},
// SAFETY: We know that the pointer is valid because it could have only been constructed
// from a valid `Arc<str>` handed to `Cow::from_shared`, which we assumed ownership of,
// also ensuring that the strong count is at least one.
Kind::Shared => unsafe {
drop(Arc::from_raw(Self::borrowed_from_parts(ptr, metadata)));
},
}
}
}
impl<T> Cowable for [T]
where
T: Clone,
{
type Pointer = T;
#[inline]
fn borrowed_into_parts(&self) -> (NonNull<Self::Pointer>, Metadata) {
// SAFETY: We know that it's safe to take and hold a pointer to a reference to `Self` since
// `Cow` can only live as long as the input reference does, and an invalid pointer cannot
// be taken from a live reference.
let ptr = unsafe { NonNull::new_unchecked(self.as_ptr() as *mut _) };
let metadata = Metadata::borrowed(self.len());
(ptr, metadata)
}
#[inline]
fn owned_into_parts(owned: <Self as ToOwned>::Owned) -> (NonNull<Self::Pointer>, Metadata) {
let mut owned = ManuallyDrop::new(owned);
// SAFETY: We know that it's safe to take and hold a pointer to a reference to `owned` since
// we own the allocation by virtue of consuming it here without dropping it.
let ptr = unsafe { NonNull::new_unchecked(owned.as_mut_ptr()) };
let metadata = Metadata::owned(owned.len(), owned.capacity());
(ptr, metadata)
}
#[inline]
fn shared_into_parts(arc: Arc<Self>) -> (NonNull<Self::Pointer>, Metadata) {
let metadata = Metadata::shared(arc.len());
// SAFETY: We know that the pointer given back by `Arc::into_raw` is valid.
let ptr = unsafe { NonNull::new_unchecked(Arc::into_raw(arc) as *mut _) };
(ptr, metadata)
}
#[inline]
fn borrowed_from_parts(ptr: NonNull<Self::Pointer>, metadata: &Metadata) -> *const Self {
slice_from_raw_parts(ptr.as_ptr(), metadata.len()) as *const _
}
#[inline]
fn owned_from_parts(
ptr: NonNull<Self::Pointer>,
metadata: &Metadata,
) -> <Self as ToOwned>::Owned {
match metadata.kind() {
Kind::Borrowed => {
// SAFETY: We know that it's safe to take and hold a pointer to a reference to
// `Self` since `Cow` can only live as long as the input reference does, and an
// invalid pointer cannot be taken from a live reference.
let data = unsafe { &*Self::borrowed_from_parts(ptr, metadata) };
data.to_vec()
}
// SAFETY: We know that the pointer is valid because it could have only been
// constructed from a valid `Vec<T>` handed to `Cow::from_owned`, which we
// assumed ownership of.
Kind::Owned => unsafe {
Vec::from_raw_parts(ptr.as_ptr(), metadata.len(), metadata.capacity())
},
Kind::Shared => {
// SAFETY: We know that the pointer is valid because it could have only been
// constructed from a valid `Arc<[T]>` handed to `Cow::from_shared`, which we
// assumed ownership of, also ensuring that the strong count is at least one.
let arc = unsafe { Arc::from_raw(Self::borrowed_from_parts(ptr, metadata)) };
arc.to_vec()
}
}
}
#[inline]
fn clone_from_parts(
ptr: NonNull<Self::Pointer>,
metadata: &Metadata,
) -> (NonNull<Self::Pointer>, Metadata) {
match metadata.kind() {
Kind::Borrowed => (ptr, *metadata),
Kind::Owned => {
let vec_ptr = Self::borrowed_from_parts(ptr, metadata);
// SAFETY: We know that the pointer is valid because it could have only been
// constructed from a valid `Vec<T>` handed to `Cow::from_owned`, which we assumed
// ownership of.
let new_vec = unsafe { vec_ptr.as_ref().unwrap().to_vec() };
Self::owned_into_parts(new_vec)
}
Kind::Shared => clone_shared::<Self>(ptr, metadata),
}
}
#[inline]
fn drop_from_parts(ptr: NonNull<Self::Pointer>, metadata: &Metadata) {
match metadata.kind() {
Kind::Borrowed => {}
// SAFETY: We know that the pointer is valid because it could have only been constructed
// from a valid `Vec<T>` handed to `Cow::from_owned`, which we assumed ownership of.
Kind::Owned => unsafe {
drop(Vec::from_raw_parts(ptr.as_ptr(), metadata.len(), metadata.capacity()));
},
// SAFETY: We know that the pointer is valid because it could have only been constructed
// from a valid `Arc<[T]>` handed to `Cow::from_shared`, which we assumed ownership of,
// also ensuring that the strong count is at least one.
Kind::Shared => unsafe {
drop(Arc::from_raw(Self::borrowed_from_parts(ptr, metadata)));
},
}
}
}
fn clone_shared<T: Cowable + ?Sized>(
ptr: NonNull<T::Pointer>,
metadata: &Metadata,
) -> (NonNull<T::Pointer>, Metadata) {
let arc_ptr = T::borrowed_from_parts(ptr, metadata);
// SAFETY: We know that the pointer is valid because it could have only been
// constructed from a valid `Arc<T>` handed to `Cow::from_shared`, which we assumed
// ownership of, also ensuring that the strong count is at least one.
unsafe {
Arc::increment_strong_count(arc_ptr);
}
(ptr, *metadata)
}