1use core::fmt;
2use core::ops::{Add, Mul, Neg, Sub};
3
4use ff::{Field, FromUniformBytes, PrimeField, WithSmallOrderMulGroup};
5use rand::RngCore;
6use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
7
8#[cfg(feature = "sqrt-table")]
9use lazy_static::lazy_static;
10
11#[cfg(feature = "bits")]
12use ff::{FieldBits, PrimeFieldBits};
13
14use crate::arithmetic::{adc, mac, sbb, SqrtTableHelpers};
15
16#[cfg(feature = "sqrt-table")]
17use crate::arithmetic::SqrtTables;
18
19#[derive(Clone, Copy, Eq)]
28#[repr(transparent)]
29pub struct Fp(pub(crate) [u64; 4]);
30
31impl fmt::Debug for Fp {
32 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
33 let tmp = self.to_repr();
34 write!(f, "0x")?;
35 for &b in tmp.iter().rev() {
36 write!(f, "{:02x}", b)?;
37 }
38 Ok(())
39 }
40}
41
42impl From<bool> for Fp {
43 fn from(bit: bool) -> Fp {
44 if bit {
45 Fp::one()
46 } else {
47 Fp::zero()
48 }
49 }
50}
51
52impl From<u64> for Fp {
53 fn from(val: u64) -> Fp {
54 Fp([val, 0, 0, 0]) * R2
55 }
56}
57
58impl ConstantTimeEq for Fp {
59 fn ct_eq(&self, other: &Self) -> Choice {
60 self.0[0].ct_eq(&other.0[0])
61 & self.0[1].ct_eq(&other.0[1])
62 & self.0[2].ct_eq(&other.0[2])
63 & self.0[3].ct_eq(&other.0[3])
64 }
65}
66
67impl PartialEq for Fp {
68 #[inline]
69 fn eq(&self, other: &Self) -> bool {
70 self.ct_eq(other).unwrap_u8() == 1
71 }
72}
73
74impl core::cmp::Ord for Fp {
75 fn cmp(&self, other: &Self) -> core::cmp::Ordering {
76 let left = self.to_repr();
77 let right = other.to_repr();
78 left.iter()
79 .zip(right.iter())
80 .rev()
81 .find_map(|(left_byte, right_byte)| match left_byte.cmp(right_byte) {
82 core::cmp::Ordering::Equal => None,
83 res => Some(res),
84 })
85 .unwrap_or(core::cmp::Ordering::Equal)
86 }
87}
88
89impl core::cmp::PartialOrd for Fp {
90 fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
91 Some(self.cmp(other))
92 }
93}
94
95impl ConditionallySelectable for Fp {
96 fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
97 Fp([
98 u64::conditional_select(&a.0[0], &b.0[0], choice),
99 u64::conditional_select(&a.0[1], &b.0[1], choice),
100 u64::conditional_select(&a.0[2], &b.0[2], choice),
101 u64::conditional_select(&a.0[3], &b.0[3], choice),
102 ])
103 }
104}
105
106const MODULUS: Fp = Fp([
109 0x992d30ed00000001,
110 0x224698fc094cf91b,
111 0x0000000000000000,
112 0x4000000000000000,
113]);
114
115#[cfg(not(target_pointer_width = "64"))]
117const MODULUS_LIMBS_32: [u32; 8] = [
118 0x0000_0001,
119 0x992d_30ed,
120 0x094c_f91b,
121 0x2246_98fc,
122 0x0000_0000,
123 0x0000_0000,
124 0x0000_0000,
125 0x4000_0000,
126];
127
128impl<'a> Neg for &'a Fp {
129 type Output = Fp;
130
131 #[inline]
132 fn neg(self) -> Fp {
133 self.neg()
134 }
135}
136
137impl Neg for Fp {
138 type Output = Fp;
139
140 #[inline]
141 fn neg(self) -> Fp {
142 -&self
143 }
144}
145
146impl<'a, 'b> Sub<&'b Fp> for &'a Fp {
147 type Output = Fp;
148
149 #[inline]
150 fn sub(self, rhs: &'b Fp) -> Fp {
151 self.sub(rhs)
152 }
153}
154
155impl<'a, 'b> Add<&'b Fp> for &'a Fp {
156 type Output = Fp;
157
158 #[inline]
159 fn add(self, rhs: &'b Fp) -> Fp {
160 self.add(rhs)
161 }
162}
163
164impl<'a, 'b> Mul<&'b Fp> for &'a Fp {
165 type Output = Fp;
166
167 #[inline]
168 fn mul(self, rhs: &'b Fp) -> Fp {
169 self.mul(rhs)
170 }
171}
172
173impl_binops_additive!(Fp, Fp);
174impl_binops_multiplicative!(Fp, Fp);
175
176impl<T: ::core::borrow::Borrow<Fp>> ::core::iter::Sum<T> for Fp {
177 fn sum<I: Iterator<Item = T>>(iter: I) -> Self {
178 iter.fold(Self::ZERO, |acc, item| acc + item.borrow())
179 }
180}
181
182impl<T: ::core::borrow::Borrow<Fp>> ::core::iter::Product<T> for Fp {
183 fn product<I: Iterator<Item = T>>(iter: I) -> Self {
184 iter.fold(Self::ONE, |acc, item| acc * item.borrow())
185 }
186}
187
188const INV: u64 = 0x992d30ecffffffff;
190
191const R: Fp = Fp([
193 0x34786d38fffffffd,
194 0x992c350be41914ad,
195 0xffffffffffffffff,
196 0x3fffffffffffffff,
197]);
198
199const R2: Fp = Fp([
201 0x8c78ecb30000000f,
202 0xd7d30dbd8b0de0e7,
203 0x7797a99bc3c95d18,
204 0x096d41af7b9cb714,
205]);
206
207const R3: Fp = Fp([
209 0xf185a5993a9e10f9,
210 0xf6a68f3b6ac5b1d1,
211 0xdf8d1014353fd42c,
212 0x2ae309222d2d9910,
213]);
214
215const GENERATOR: Fp = Fp::from_raw([
218 0x0000_0000_0000_0005,
219 0x0000_0000_0000_0000,
220 0x0000_0000_0000_0000,
221 0x0000_0000_0000_0000,
222]);
223
224const S: u32 = 32;
225
226const ROOT_OF_UNITY: Fp = Fp::from_raw([
230 0xbdad6fabd87ea32f,
231 0xea322bf2b7bb7584,
232 0x362120830561f81a,
233 0x2bce74deac30ebda,
234]);
235
236const DELTA: Fp = Fp::from_raw([
240 0x6a6ccd20dd7b9ba2,
241 0xf5e4f3f13eee5636,
242 0xbd455b7112a5049d,
243 0x0a757d0f0006ab6c,
244]);
245
246#[cfg(any(test, not(feature = "sqrt-table")))]
248const T_MINUS1_OVER2: [u64; 4] = [
249 0x04a6_7c8d_cc96_9876,
250 0x0000_0000_1123_4c7e,
251 0x0000_0000_0000_0000,
252 0x0000_0000_2000_0000,
253];
254
255impl Default for Fp {
256 #[inline]
257 fn default() -> Self {
258 Self::zero()
259 }
260}
261
262impl Fp {
263 #[inline]
265 pub const fn zero() -> Fp {
266 Fp([0, 0, 0, 0])
267 }
268
269 #[inline]
271 pub const fn one() -> Fp {
272 R
273 }
274
275 #[inline]
277 pub const fn double(&self) -> Fp {
278 self.add(self)
280 }
281
282 fn from_u512(limbs: [u64; 8]) -> Fp {
283 let d0 = Fp([limbs[0], limbs[1], limbs[2], limbs[3]]);
297 let d1 = Fp([limbs[4], limbs[5], limbs[6], limbs[7]]);
298 d0 * R2 + d1 * R3
300 }
301
302 pub const fn from_raw(val: [u64; 4]) -> Self {
305 (&Fp(val)).mul(&R2)
306 }
307
308 #[cfg_attr(not(feature = "uninline-portable"), inline)]
310 pub const fn square(&self) -> Fp {
311 let (r1, carry) = mac(0, self.0[0], self.0[1], 0);
312 let (r2, carry) = mac(0, self.0[0], self.0[2], carry);
313 let (r3, r4) = mac(0, self.0[0], self.0[3], carry);
314
315 let (r3, carry) = mac(r3, self.0[1], self.0[2], 0);
316 let (r4, r5) = mac(r4, self.0[1], self.0[3], carry);
317
318 let (r5, r6) = mac(r5, self.0[2], self.0[3], 0);
319
320 let r7 = r6 >> 63;
321 let r6 = (r6 << 1) | (r5 >> 63);
322 let r5 = (r5 << 1) | (r4 >> 63);
323 let r4 = (r4 << 1) | (r3 >> 63);
324 let r3 = (r3 << 1) | (r2 >> 63);
325 let r2 = (r2 << 1) | (r1 >> 63);
326 let r1 = r1 << 1;
327
328 let (r0, carry) = mac(0, self.0[0], self.0[0], 0);
329 let (r1, carry) = adc(0, r1, carry);
330 let (r2, carry) = mac(r2, self.0[1], self.0[1], carry);
331 let (r3, carry) = adc(0, r3, carry);
332 let (r4, carry) = mac(r4, self.0[2], self.0[2], carry);
333 let (r5, carry) = adc(0, r5, carry);
334 let (r6, carry) = mac(r6, self.0[3], self.0[3], carry);
335 let (r7, _) = adc(0, r7, carry);
336
337 Fp::montgomery_reduce(r0, r1, r2, r3, r4, r5, r6, r7)
338 }
339
340 #[allow(clippy::too_many_arguments)]
341 #[cfg_attr(not(feature = "uninline-portable"), inline(always))]
342 const fn montgomery_reduce(
343 r0: u64,
344 r1: u64,
345 r2: u64,
346 r3: u64,
347 r4: u64,
348 r5: u64,
349 r6: u64,
350 r7: u64,
351 ) -> Self {
352 let k = r0.wrapping_mul(INV);
357 let (_, carry) = mac(r0, k, MODULUS.0[0], 0);
358 let (r1, carry) = mac(r1, k, MODULUS.0[1], carry);
359 let (r2, carry) = mac(r2, k, MODULUS.0[2], carry);
360 let (r3, carry) = mac(r3, k, MODULUS.0[3], carry);
361 let (r4, carry2) = adc(r4, 0, carry);
362
363 let k = r1.wrapping_mul(INV);
364 let (_, carry) = mac(r1, k, MODULUS.0[0], 0);
365 let (r2, carry) = mac(r2, k, MODULUS.0[1], carry);
366 let (r3, carry) = mac(r3, k, MODULUS.0[2], carry);
367 let (r4, carry) = mac(r4, k, MODULUS.0[3], carry);
368 let (r5, carry2) = adc(r5, carry2, carry);
369
370 let k = r2.wrapping_mul(INV);
371 let (_, carry) = mac(r2, k, MODULUS.0[0], 0);
372 let (r3, carry) = mac(r3, k, MODULUS.0[1], carry);
373 let (r4, carry) = mac(r4, k, MODULUS.0[2], carry);
374 let (r5, carry) = mac(r5, k, MODULUS.0[3], carry);
375 let (r6, carry2) = adc(r6, carry2, carry);
376
377 let k = r3.wrapping_mul(INV);
378 let (_, carry) = mac(r3, k, MODULUS.0[0], 0);
379 let (r4, carry) = mac(r4, k, MODULUS.0[1], carry);
380 let (r5, carry) = mac(r5, k, MODULUS.0[2], carry);
381 let (r6, carry) = mac(r6, k, MODULUS.0[3], carry);
382 let (r7, _) = adc(r7, carry2, carry);
383
384 (&Fp([r4, r5, r6, r7])).sub(&MODULUS)
386 }
387
388 #[cfg_attr(not(feature = "uninline-portable"), inline)]
390 pub const fn mul(&self, rhs: &Self) -> Self {
391 let (r0, carry) = mac(0, self.0[0], rhs.0[0], 0);
394 let (r1, carry) = mac(0, self.0[0], rhs.0[1], carry);
395 let (r2, carry) = mac(0, self.0[0], rhs.0[2], carry);
396 let (r3, r4) = mac(0, self.0[0], rhs.0[3], carry);
397
398 let (r1, carry) = mac(r1, self.0[1], rhs.0[0], 0);
399 let (r2, carry) = mac(r2, self.0[1], rhs.0[1], carry);
400 let (r3, carry) = mac(r3, self.0[1], rhs.0[2], carry);
401 let (r4, r5) = mac(r4, self.0[1], rhs.0[3], carry);
402
403 let (r2, carry) = mac(r2, self.0[2], rhs.0[0], 0);
404 let (r3, carry) = mac(r3, self.0[2], rhs.0[1], carry);
405 let (r4, carry) = mac(r4, self.0[2], rhs.0[2], carry);
406 let (r5, r6) = mac(r5, self.0[2], rhs.0[3], carry);
407
408 let (r3, carry) = mac(r3, self.0[3], rhs.0[0], 0);
409 let (r4, carry) = mac(r4, self.0[3], rhs.0[1], carry);
410 let (r5, carry) = mac(r5, self.0[3], rhs.0[2], carry);
411 let (r6, r7) = mac(r6, self.0[3], rhs.0[3], carry);
412
413 Fp::montgomery_reduce(r0, r1, r2, r3, r4, r5, r6, r7)
414 }
415
416 #[cfg_attr(not(feature = "uninline-portable"), inline)]
418 pub const fn sub(&self, rhs: &Self) -> Self {
419 let (d0, borrow) = sbb(self.0[0], rhs.0[0], 0);
420 let (d1, borrow) = sbb(self.0[1], rhs.0[1], borrow);
421 let (d2, borrow) = sbb(self.0[2], rhs.0[2], borrow);
422 let (d3, borrow) = sbb(self.0[3], rhs.0[3], borrow);
423
424 let (d0, carry) = adc(d0, MODULUS.0[0] & borrow, 0);
427 let (d1, carry) = adc(d1, MODULUS.0[1] & borrow, carry);
428 let (d2, carry) = adc(d2, MODULUS.0[2] & borrow, carry);
429 let (d3, _) = adc(d3, MODULUS.0[3] & borrow, carry);
430
431 Fp([d0, d1, d2, d3])
432 }
433
434 #[cfg_attr(not(feature = "uninline-portable"), inline)]
436 pub const fn add(&self, rhs: &Self) -> Self {
437 let (d0, carry) = adc(self.0[0], rhs.0[0], 0);
438 let (d1, carry) = adc(self.0[1], rhs.0[1], carry);
439 let (d2, carry) = adc(self.0[2], rhs.0[2], carry);
440 let (d3, _) = adc(self.0[3], rhs.0[3], carry);
441
442 (&Fp([d0, d1, d2, d3])).sub(&MODULUS)
445 }
446
447 #[cfg_attr(not(feature = "uninline-portable"), inline)]
449 pub const fn neg(&self) -> Self {
450 let (d0, borrow) = sbb(MODULUS.0[0], self.0[0], 0);
454 let (d1, borrow) = sbb(MODULUS.0[1], self.0[1], borrow);
455 let (d2, borrow) = sbb(MODULUS.0[2], self.0[2], borrow);
456 let (d3, _) = sbb(MODULUS.0[3], self.0[3], borrow);
457
458 let mask = (((self.0[0] | self.0[1] | self.0[2] | self.0[3]) == 0) as u64).wrapping_sub(1);
461
462 Fp([d0 & mask, d1 & mask, d2 & mask, d3 & mask])
463 }
464}
465
466impl From<Fp> for [u8; 32] {
467 fn from(value: Fp) -> [u8; 32] {
468 value.to_repr()
469 }
470}
471
472impl<'a> From<&'a Fp> for [u8; 32] {
473 fn from(value: &'a Fp) -> [u8; 32] {
474 value.to_repr()
475 }
476}
477
478impl ff::Field for Fp {
479 const ZERO: Self = Self::zero();
480 const ONE: Self = Self::one();
481
482 fn random(mut rng: impl RngCore) -> Self {
483 Self::from_u512([
484 rng.next_u64(),
485 rng.next_u64(),
486 rng.next_u64(),
487 rng.next_u64(),
488 rng.next_u64(),
489 rng.next_u64(),
490 rng.next_u64(),
491 rng.next_u64(),
492 ])
493 }
494
495 fn double(&self) -> Self {
496 self.double()
497 }
498
499 #[inline(always)]
500 fn square(&self) -> Self {
501 self.square()
502 }
503
504 fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self) {
505 #[cfg(feature = "sqrt-table")]
506 {
507 FP_TABLES.sqrt_ratio(num, div)
508 }
509
510 #[cfg(not(feature = "sqrt-table"))]
511 ff::helpers::sqrt_ratio_generic(num, div)
512 }
513
514 #[cfg(feature = "sqrt-table")]
515 fn sqrt_alt(&self) -> (Choice, Self) {
516 FP_TABLES.sqrt_alt(self)
517 }
518
519 fn sqrt(&self) -> CtOption<Self> {
521 #[cfg(feature = "sqrt-table")]
522 {
523 let (is_square, res) = FP_TABLES.sqrt_alt(self);
524 CtOption::new(res, is_square)
525 }
526
527 #[cfg(not(feature = "sqrt-table"))]
528 ff::helpers::sqrt_tonelli_shanks(self, &T_MINUS1_OVER2)
529 }
530
531 fn invert(&self) -> CtOption<Self> {
534 let tmp = self.pow_vartime(&[
535 0x992d30ecffffffff,
536 0x224698fc094cf91b,
537 0x0,
538 0x4000000000000000,
539 ]);
540
541 CtOption::new(tmp, !self.ct_eq(&Self::zero()))
542 }
543
544 fn pow_vartime<S: AsRef<[u64]>>(&self, exp: S) -> Self {
545 let mut res = Self::one();
546 let mut found_one = false;
547 for e in exp.as_ref().iter().rev() {
548 for i in (0..64).rev() {
549 if found_one {
550 res = res.square();
551 }
552
553 if ((*e >> i) & 1) == 1 {
554 found_one = true;
555 res *= self;
556 }
557 }
558 }
559 res
560 }
561}
562
563impl ff::PrimeField for Fp {
564 type Repr = [u8; 32];
565
566 const MODULUS: &'static str =
567 "0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001";
568 const TWO_INV: Self = Fp::from_raw([
569 0xcc96987680000001,
570 0x11234c7e04a67c8d,
571 0x0000000000000000,
572 0x2000000000000000,
573 ]);
574 const NUM_BITS: u32 = 255;
575 const CAPACITY: u32 = 254;
576 const MULTIPLICATIVE_GENERATOR: Self = GENERATOR;
577 const S: u32 = S;
578 const ROOT_OF_UNITY: Self = ROOT_OF_UNITY;
579 const ROOT_OF_UNITY_INV: Self = Fp::from_raw([
580 0xf0b87c7db2ce91f6,
581 0x84a0a1d8859f066f,
582 0xb4ed8e647196dad1,
583 0x2cd5282c53116b5c,
584 ]);
585 const DELTA: Self = DELTA;
586
587 fn from_u128(v: u128) -> Self {
588 Fp::from_raw([v as u64, (v >> 64) as u64, 0, 0])
589 }
590
591 fn from_repr(repr: Self::Repr) -> CtOption<Self> {
592 let mut tmp = Fp([0, 0, 0, 0]);
593
594 tmp.0[0] = u64::from_le_bytes(repr[0..8].try_into().unwrap());
595 tmp.0[1] = u64::from_le_bytes(repr[8..16].try_into().unwrap());
596 tmp.0[2] = u64::from_le_bytes(repr[16..24].try_into().unwrap());
597 tmp.0[3] = u64::from_le_bytes(repr[24..32].try_into().unwrap());
598
599 let (_, borrow) = sbb(tmp.0[0], MODULUS.0[0], 0);
601 let (_, borrow) = sbb(tmp.0[1], MODULUS.0[1], borrow);
602 let (_, borrow) = sbb(tmp.0[2], MODULUS.0[2], borrow);
603 let (_, borrow) = sbb(tmp.0[3], MODULUS.0[3], borrow);
604
605 let is_some = (borrow as u8) & 1;
609
610 tmp *= &R2;
613
614 CtOption::new(tmp, Choice::from(is_some))
615 }
616
617 fn to_repr(&self) -> Self::Repr {
618 let tmp = Fp::montgomery_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
621
622 let mut res = [0; 32];
623 res[0..8].copy_from_slice(&tmp.0[0].to_le_bytes());
624 res[8..16].copy_from_slice(&tmp.0[1].to_le_bytes());
625 res[16..24].copy_from_slice(&tmp.0[2].to_le_bytes());
626 res[24..32].copy_from_slice(&tmp.0[3].to_le_bytes());
627
628 res
629 }
630
631 fn is_odd(&self) -> Choice {
632 Choice::from(self.to_repr()[0] & 1)
633 }
634}
635
636#[cfg(all(feature = "bits", not(target_pointer_width = "64")))]
637type ReprBits = [u32; 8];
638
639#[cfg(all(feature = "bits", target_pointer_width = "64"))]
640type ReprBits = [u64; 4];
641
642#[cfg(feature = "bits")]
643#[cfg_attr(docsrs, doc(cfg(feature = "bits")))]
644impl PrimeFieldBits for Fp {
645 type ReprBits = ReprBits;
646
647 fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
648 let bytes = self.to_repr();
649
650 #[cfg(not(target_pointer_width = "64"))]
651 let limbs = [
652 u32::from_le_bytes(bytes[0..4].try_into().unwrap()),
653 u32::from_le_bytes(bytes[4..8].try_into().unwrap()),
654 u32::from_le_bytes(bytes[8..12].try_into().unwrap()),
655 u32::from_le_bytes(bytes[12..16].try_into().unwrap()),
656 u32::from_le_bytes(bytes[16..20].try_into().unwrap()),
657 u32::from_le_bytes(bytes[20..24].try_into().unwrap()),
658 u32::from_le_bytes(bytes[24..28].try_into().unwrap()),
659 u32::from_le_bytes(bytes[28..32].try_into().unwrap()),
660 ];
661
662 #[cfg(target_pointer_width = "64")]
663 let limbs = [
664 u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
665 u64::from_le_bytes(bytes[8..16].try_into().unwrap()),
666 u64::from_le_bytes(bytes[16..24].try_into().unwrap()),
667 u64::from_le_bytes(bytes[24..32].try_into().unwrap()),
668 ];
669
670 FieldBits::new(limbs)
671 }
672
673 fn char_le_bits() -> FieldBits<Self::ReprBits> {
674 #[cfg(not(target_pointer_width = "64"))]
675 {
676 FieldBits::new(MODULUS_LIMBS_32)
677 }
678
679 #[cfg(target_pointer_width = "64")]
680 FieldBits::new(MODULUS.0)
681 }
682}
683
684#[cfg(feature = "sqrt-table")]
685lazy_static! {
686 #[cfg_attr(docsrs, doc(cfg(feature = "sqrt-table")))]
688 static ref FP_TABLES: SqrtTables<Fp> = SqrtTables::new(0x11BE, 1098);
689}
690
691impl SqrtTableHelpers for Fp {
692 fn pow_by_t_minus1_over2(&self) -> Self {
693 let sqr = |x: Fp, i: u32| (0..i).fold(x, |x, _| x.square());
694
695 let r10 = self.square();
696 let r11 = r10 * self;
697 let r110 = r11.square();
698 let r111 = r110 * self;
699 let r1001 = r111 * r10;
700 let r1101 = r111 * r110;
701 let ra = sqr(*self, 129) * self;
702 let rb = sqr(ra, 7) * r1001;
703 let rc = sqr(rb, 7) * r1101;
704 let rd = sqr(rc, 4) * r11;
705 let re = sqr(rd, 6) * r111;
706 let rf = sqr(re, 3) * r111;
707 let rg = sqr(rf, 10) * r1001;
708 let rh = sqr(rg, 5) * r1001;
709 let ri = sqr(rh, 4) * r1001;
710 let rj = sqr(ri, 3) * r111;
711 let rk = sqr(rj, 4) * r1001;
712 let rl = sqr(rk, 5) * r11;
713 let rm = sqr(rl, 4) * r111;
714 let rn = sqr(rm, 4) * r11;
715 let ro = sqr(rn, 6) * r1001;
716 let rp = sqr(ro, 5) * r1101;
717 let rq = sqr(rp, 4) * r11;
718 let rr = sqr(rq, 7) * r111;
719 let rs = sqr(rr, 3) * r11;
720 rs.square() }
722
723 fn get_lower_32(&self) -> u32 {
724 let tmp = Fp::montgomery_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
726
727 tmp.0[0] as u32
728 }
729}
730
731impl WithSmallOrderMulGroup<3> for Fp {
732 const ZETA: Self = Fp::from_raw([
733 0x1dad5ebdfdfe4ab9,
734 0x1d1f8bd237ad3149,
735 0x2caad5dc57aab1b0,
736 0x12ccca834acdba71,
737 ]);
738}
739
740impl FromUniformBytes<64> for Fp {
741 fn from_uniform_bytes(bytes: &[u8; 64]) -> Fp {
744 Fp::from_u512([
745 u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
746 u64::from_le_bytes(bytes[8..16].try_into().unwrap()),
747 u64::from_le_bytes(bytes[16..24].try_into().unwrap()),
748 u64::from_le_bytes(bytes[24..32].try_into().unwrap()),
749 u64::from_le_bytes(bytes[32..40].try_into().unwrap()),
750 u64::from_le_bytes(bytes[40..48].try_into().unwrap()),
751 u64::from_le_bytes(bytes[48..56].try_into().unwrap()),
752 u64::from_le_bytes(bytes[56..64].try_into().unwrap()),
753 ])
754 }
755}
756
757#[cfg(feature = "gpu")]
758impl ec_gpu::GpuName for Fp {
759 fn name() -> alloc::string::String {
760 ec_gpu::name!()
761 }
762}
763
764#[cfg(feature = "gpu")]
765impl ec_gpu::GpuField for Fp {
766 fn one() -> alloc::vec::Vec<u32> {
767 crate::fields::u64_to_u32(&R.0[..])
768 }
769
770 fn r2() -> alloc::vec::Vec<u32> {
771 crate::fields::u64_to_u32(&R2.0[..])
772 }
773
774 fn modulus() -> alloc::vec::Vec<u32> {
775 crate::fields::u64_to_u32(&MODULUS.0[..])
776 }
777}
778
779#[test]
780fn test_inv() {
781 let mut inv = 1u64;
785 for _ in 0..63 {
786 inv = inv.wrapping_mul(inv);
787 inv = inv.wrapping_mul(MODULUS.0[0]);
788 }
789 inv = inv.wrapping_neg();
790
791 assert_eq!(inv, INV);
792}
793
794#[test]
795fn test_sqrt() {
796 let v = (Fp::TWO_INV).square().sqrt().unwrap();
798 assert!(v == Fp::TWO_INV || (-v) == Fp::TWO_INV);
799}
800
801#[test]
802fn test_sqrt_32bit_overflow() {
803 assert!((Fp::from(5)).sqrt().is_none().unwrap_u8() == 1);
804}
805
806#[test]
807fn test_pow_by_t_minus1_over2() {
808 let v = (Fp::TWO_INV).pow_by_t_minus1_over2();
810 assert!(v == ff::Field::pow_vartime(&Fp::TWO_INV, &T_MINUS1_OVER2));
811}
812
813#[test]
814fn test_sqrt_ratio_and_alt() {
815 let num = (Fp::TWO_INV).square();
817 let div = Fp::from(25);
818 let div_inverse = div.invert().unwrap();
819 let expected = Fp::TWO_INV * Fp::from(5).invert().unwrap();
820 let (is_square, v) = Fp::sqrt_ratio(&num, &div);
821 assert!(bool::from(is_square));
822 assert!(v == expected || (-v) == expected);
823
824 let (is_square_alt, v_alt) = Fp::sqrt_alt(&(num * div_inverse));
825 assert!(bool::from(is_square_alt));
826 assert!(v_alt == v);
827
828 let num = num * Fp::ROOT_OF_UNITY;
830 let expected = Fp::TWO_INV * Fp::ROOT_OF_UNITY * Fp::from(5).invert().unwrap();
831 let (is_square, v) = Fp::sqrt_ratio(&num, &div);
832 assert!(!bool::from(is_square));
833 assert!(v == expected || (-v) == expected);
834
835 let (is_square_alt, v_alt) = Fp::sqrt_alt(&(num * div_inverse));
836 assert!(!bool::from(is_square_alt));
837 assert!(v_alt == v);
838
839 let num = Fp::zero();
841 let expected = Fp::zero();
842 let (is_square, v) = Fp::sqrt_ratio(&num, &div);
843 assert!(bool::from(is_square));
844 assert!(v == expected);
845
846 let (is_square_alt, v_alt) = Fp::sqrt_alt(&(num * div_inverse));
847 assert!(bool::from(is_square_alt));
848 assert!(v_alt == v);
849
850 let num = (Fp::TWO_INV).square();
852 let div = Fp::zero();
853 let expected = Fp::zero();
854 let (is_square, v) = Fp::sqrt_ratio(&num, &div);
855 assert!(!bool::from(is_square));
856 assert!(v == expected);
857}
858
859#[test]
860fn test_zeta() {
861 assert_eq!(
862 format!("{:?}", Fp::ZETA),
863 "0x12ccca834acdba712caad5dc57aab1b01d1f8bd237ad31491dad5ebdfdfe4ab9"
864 );
865
866 let a = Fp::ZETA;
867 assert!(a != Fp::one());
868 let b = a * a;
869 assert!(b != Fp::one());
870 let c = b * a;
871 assert!(c == Fp::one());
872}
873
874#[test]
875fn test_root_of_unity() {
876 assert_eq!(
877 Fp::ROOT_OF_UNITY.pow_vartime(&[1 << Fp::S, 0, 0, 0]),
878 Fp::one()
879 );
880}
881
882#[test]
883fn test_inv_root_of_unity() {
884 assert_eq!(Fp::ROOT_OF_UNITY_INV, Fp::ROOT_OF_UNITY.invert().unwrap());
885}
886
887#[test]
888fn test_inv_2() {
889 assert_eq!(Fp::TWO_INV, Fp::from(2).invert().unwrap());
890}
891
892#[test]
893fn test_delta() {
894 assert_eq!(Fp::DELTA, GENERATOR.pow(&[1u64 << Fp::S, 0, 0, 0]));
895 assert_eq!(
896 Fp::DELTA,
897 Fp::MULTIPLICATIVE_GENERATOR.pow(&[1u64 << Fp::S, 0, 0, 0])
898 );
899}
900
901#[cfg(not(target_pointer_width = "64"))]
902#[test]
903fn consistent_modulus_limbs() {
904 for (a, &b) in MODULUS
905 .0
906 .iter()
907 .flat_map(|&limb| {
908 Some(limb as u32)
909 .into_iter()
910 .chain(Some((limb >> 32) as u32))
911 })
912 .zip(MODULUS_LIMBS_32.iter())
913 {
914 assert_eq!(a, b);
915 }
916}
917
918#[test]
919fn test_from_u512() {
920 assert_eq!(
921 Fp::from_raw([
922 0x3daec14d565241d9,
923 0x0b7af45b6073944b,
924 0xea5b8bd611a5bd4c,
925 0x150160330625db3d
926 ]),
927 Fp::from_u512([
928 0xee155641297678a1,
929 0xd83e156bdbfdbe65,
930 0xd9ccd834c68ba0b5,
931 0xf508ede312272758,
932 0x038df7cbf8228e89,
933 0x3505a1e4a3c74b41,
934 0xbfa46f775eb82db3,
935 0x26ebe27e262f471d
936 ])
937 );
938}