halo2_base/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
//! Base library to build Halo2 circuits.
#![feature(generic_const_exprs)]
#![feature(stmt_expr_attributes)]
#![feature(trait_alias)]
#![feature(associated_type_defaults)]
#![allow(incomplete_features)]
#![deny(clippy::perf)]
#![allow(clippy::too_many_arguments)]
#![warn(clippy::default_numeric_fallback)]
#![warn(missing_docs)]
use getset::CopyGetters;
use itertools::Itertools;
// Different memory allocator options:
#[cfg(feature = "jemallocator")]
use jemallocator::Jemalloc;
#[cfg(feature = "jemallocator")]
#[global_allocator]
static GLOBAL: Jemalloc = Jemalloc;
// mimalloc is fastest on Mac M2
#[cfg(feature = "mimalloc")]
use mimalloc::MiMalloc;
#[cfg(feature = "mimalloc")]
#[global_allocator]
static GLOBAL: MiMalloc = MiMalloc;
#[cfg(all(feature = "halo2-pse", feature = "halo2-axiom"))]
compile_error!(
"Cannot have both \"halo2-pse\" and \"halo2-axiom\" features enabled at the same time!"
);
#[cfg(not(any(feature = "halo2-pse", feature = "halo2-axiom")))]
compile_error!("Must enable exactly one of \"halo2-pse\" or \"halo2-axiom\" features to choose which halo2_proofs crate to use.");
// use gates::flex_gate::MAX_PHASE;
#[cfg(feature = "halo2-pse")]
pub use halo2_proofs;
#[cfg(feature = "halo2-axiom")]
pub use halo2_proofs_axiom as halo2_proofs;
use halo2_proofs::halo2curves::ff;
use halo2_proofs::plonk::Assigned;
use utils::ScalarField;
use virtual_region::copy_constraints::SharedCopyConstraintManager;
/// Module that contains the main API for creating and working with circuits.
/// `gates` is misleading because we currently only use one custom gate throughout.
pub mod gates;
/// Module for the Poseidon hash function.
pub mod poseidon;
/// Module for SafeType which enforce value range and realted functions.
pub mod safe_types;
/// Utility functions for converting between different types of field elements.
pub mod utils;
pub mod virtual_region;
/// Constant representing whether the Layouter calls `synthesize` once just to get region shape.
#[cfg(feature = "halo2-axiom")]
pub const SKIP_FIRST_PASS: bool = false;
/// Constant representing whether the Layouter calls `synthesize` once just to get region shape.
#[cfg(feature = "halo2-pse")]
pub const SKIP_FIRST_PASS: bool = true;
/// Convenience Enum which abstracts the scenarios under a value is added to an advice column.
#[derive(Clone, Copy, Debug)]
pub enum QuantumCell<F: ScalarField> {
/// An [AssignedValue] already existing in the advice column (e.g., a witness value that was already assigned in a previous cell in the column).
/// * Assigns a new cell into the advice column with value equal to the value of a.
/// * Imposes an equality constraint between the new cell and the cell of a so the Verifier guarantees that these two cells are always equal.
Existing(AssignedValue<F>),
// This is a guard for witness values assigned after pkey generation. We do not use `Value` api anymore.
/// A non-existing witness [ScalarField] value (e.g. private input) to add to an advice column.
Witness(F),
/// A non-existing witness [ScalarField] marked as a fraction for optimization in batch inversion later.
WitnessFraction(Assigned<F>),
/// A known constant value added as a witness value to the advice column and added to the "Fixed" column during circuit creation time.
/// * Visible to both the Prover and the Verifier.
/// * Imposes an equality constraint between the two corresponding cells in the advice and fixed columns.
Constant(F),
}
impl<F: ScalarField> From<AssignedValue<F>> for QuantumCell<F> {
/// Converts an [`AssignedValue<F>`] into a [`QuantumCell<F>`] of enum variant `Existing`.
fn from(a: AssignedValue<F>) -> Self {
Self::Existing(a)
}
}
impl<F: ScalarField> QuantumCell<F> {
/// Returns an immutable reference to the underlying [ScalarField] value of a [`QuantumCell<F>`].
///
/// Panics if the [`QuantumCell<F>`] is of type `WitnessFraction`.
pub fn value(&self) -> &F {
match self {
Self::Existing(a) => a.value(),
Self::Witness(a) => a,
Self::WitnessFraction(_) => {
panic!("Trying to get value of a fraction before batch inversion")
}
Self::Constant(a) => a,
}
}
}
/// Unique tag for a context across all virtual regions.
/// In the form `(type_id, context_id)` where `type_id` should be a unique identifier
/// for the virtual region this context belongs to, and `context_id` is a counter local to that virtual region.
pub type ContextTag = (&'static str, usize);
/// Pointer to the position of a cell at `offset` in an advice column within a [Context] of `context_id`.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ContextCell {
/// The unique string identifier of the virtual region that this cell belongs to.
pub type_id: &'static str,
/// Identifier of the [Context] that this cell belongs to.
pub context_id: usize,
/// Relative offset of the cell within this [Context] advice column.
pub offset: usize,
}
impl ContextCell {
/// Creates a new [ContextCell] with the given `type_id`, `context_id`, and `offset`.
///
/// **Warning:** If you create your own `Context` in a new virtual region not provided by our libraries, you must ensure that the `type_id: &str` of the context is a globally unique identifier for the virtual region, distinct from the other `type_id` strings used to identify other virtual regions. We suggest that you either include your crate name as a prefix in the `type_id` or use [`module_path!`](https://doc.rust-lang.org/std/macro.module_path.html) to generate a prefix.
/// In the future we will introduce a macro to check this uniqueness at compile time.
pub fn new(type_id: &'static str, context_id: usize, offset: usize) -> Self {
Self { type_id, context_id, offset }
}
}
/// Pointer containing cell value and location within [Context].
///
/// Note: Performs a copy of the value, should only be used when you are about to assign the value again elsewhere.
#[derive(Clone, Copy, Debug)]
pub struct AssignedValue<F: crate::ff::Field> {
/// Value of the cell.
pub value: Assigned<F>, // we don't use reference to avoid issues with lifetimes (you can't safely borrow from vector and push to it at the same time).
// only needed during vkey, pkey gen to fetch the actual cell from the relevant context
/// [ContextCell] pointer to the cell the value is assigned to within an advice column of a [Context].
pub cell: Option<ContextCell>,
}
impl<F: ScalarField> AssignedValue<F> {
/// Returns an immutable reference to the underlying value of an [`AssignedValue<F>`].
///
/// Panics if the witness value is of type [Assigned::Rational] or [Assigned::Zero].
pub fn value(&self) -> &F {
match &self.value {
Assigned::Trivial(a) => a,
_ => unreachable!(), // if trying to fetch an un-evaluated fraction, you will have to do something manual
}
}
/// Debug helper function for writing negative tests. This will change the **witness** value in `ctx` corresponding to `self.offset`.
/// This assumes that `ctx` is the context that `self` lies in.
pub fn debug_prank(&self, ctx: &mut Context<F>, prank_value: F) {
ctx.advice[self.cell.unwrap().offset] = Assigned::Trivial(prank_value);
}
}
impl<F: ScalarField> AsRef<AssignedValue<F>> for AssignedValue<F> {
fn as_ref(&self) -> &AssignedValue<F> {
self
}
}
/// Represents a single thread of an execution trace.
/// * We keep the naming [Context] for historical reasons.
///
/// [Context] is CPU thread-local.
#[derive(Clone, Debug, CopyGetters)]
pub struct Context<F: ScalarField> {
/// Flag to determine whether only witness generation or proving and verification key generation is being performed.
/// * If witness gen is performed many operations can be skipped for optimization.
#[getset(get_copy = "pub")]
witness_gen_only: bool,
/// The challenge phase that this [Context] will map to.
#[getset(get_copy = "pub")]
phase: usize,
/// Identifier for what virtual region this context is in.
/// Warning: the circuit writer must ensure that distinct virtual regions have distinct names as strings to prevent possible errors.
/// We do not use [std::any::TypeId] because it is not stable across rust builds or dependencies.
#[getset(get_copy = "pub")]
type_id: &'static str,
/// Identifier to reference cells from this [Context].
context_id: usize,
/// Single column of advice cells.
pub advice: Vec<Assigned<F>>,
/// Slight optimization: since zero is so commonly used, keep a reference to the zero cell.
zero_cell: Option<AssignedValue<F>>,
// ========================================
// General principle: we don't need to optimize anything specific to `witness_gen_only == false` because it is only done during keygen
// If `witness_gen_only == false`:
/// [Vec] representing the selector column of this [Context] accompanying each `advice` column
/// * Assumed to have the same length as `advice`
pub selector: Vec<bool>,
/// Global shared thread-safe manager for all copy (equality) constraints between virtual advice, constants, and raw external Halo2 cells.
pub copy_manager: SharedCopyConstraintManager<F>,
}
impl<F: ScalarField> Context<F> {
/// Creates a new [Context] with the given `context_id` and witness generation enabled/disabled by the `witness_gen_only` flag.
/// * `witness_gen_only`: flag to determine whether public key generation or only witness generation is being performed.
/// * `context_id`: identifier to reference advice cells from this [Context] later.
///
/// **Warning:** If you create your own `Context` in a new virtual region not provided by our libraries, you must ensure that the `type_id: &str` of the context is a globally unique identifier for the virtual region, distinct from the other `type_id` strings used to identify other virtual regions. We suggest that you either include your crate name as a prefix in the `type_id` or use [`module_path!`](https://doc.rust-lang.org/std/macro.module_path.html) to generate a prefix.
/// In the future we will introduce a macro to check this uniqueness at compile time.
pub fn new(
witness_gen_only: bool,
phase: usize,
type_id: &'static str,
context_id: usize,
copy_manager: SharedCopyConstraintManager<F>,
) -> Self {
Self {
witness_gen_only,
phase,
type_id,
context_id,
advice: Vec::new(),
selector: Vec::new(),
zero_cell: None,
copy_manager,
}
}
/// The context id, this can be used as a tag when CPU multi-threading
pub fn id(&self) -> usize {
self.context_id
}
/// A unique tag that should identify this context across all virtual regions and phases.
pub fn tag(&self) -> ContextTag {
(self.type_id, self.context_id)
}
fn latest_cell(&self) -> ContextCell {
ContextCell::new(self.type_id, self.context_id, self.advice.len() - 1)
}
/// Virtually assigns the `input` within the current [Context], with different handling depending on the [QuantumCell] variant.
pub fn assign_cell(&mut self, input: impl Into<QuantumCell<F>>) {
// Determine the type of the cell and push it to the relevant vector
match input.into() {
QuantumCell::Existing(acell) => {
self.advice.push(acell.value);
// If witness generation is not performed, enforce equality constraints between the existing cell and the new cell
if !self.witness_gen_only {
let new_cell = self.latest_cell();
self.copy_manager
.lock()
.unwrap()
.advice_equalities
.push((new_cell, acell.cell.unwrap()));
}
}
QuantumCell::Witness(val) => {
self.advice.push(Assigned::Trivial(val));
}
QuantumCell::WitnessFraction(val) => {
self.advice.push(val);
}
QuantumCell::Constant(c) => {
self.advice.push(Assigned::Trivial(c));
// If witness generation is not performed, enforce equality constraints between the existing cell and the new cell
if !self.witness_gen_only {
let new_cell = self.latest_cell();
self.copy_manager.lock().unwrap().constant_equalities.push((c, new_cell));
}
}
}
}
/// Returns the [AssignedValue] of the last cell in the `advice` column of [Context] or [None] if `advice` is empty
pub fn last(&self) -> Option<AssignedValue<F>> {
self.advice.last().map(|v| {
let cell = (!self.witness_gen_only).then_some(self.latest_cell());
AssignedValue { value: *v, cell }
})
}
/// Returns the [AssignedValue] of the cell at the given `offset` in the `advice` column of [Context]
/// * `offset`: the offset of the cell to be fetched
/// * `offset` may be negative indexing from the end of the column (e.g., `-1` is the last cell)
/// * Assumes `offset` is a valid index in `advice`;
/// * `0` <= `offset` < `advice.len()` (or `advice.len() + offset >= 0` if `offset` is negative)
pub fn get(&self, offset: isize) -> AssignedValue<F> {
let offset = if offset < 0 {
self.advice.len().wrapping_add_signed(offset)
} else {
offset as usize
};
assert!(offset < self.advice.len());
let cell = (!self.witness_gen_only).then_some(ContextCell::new(
self.type_id,
self.context_id,
offset,
));
AssignedValue { value: self.advice[offset], cell }
}
/// Creates an equality constraint between two `advice` cells.
/// * `a`: the first `advice` cell to be constrained equal
/// * `b`: the second `advice` cell to be constrained equal
/// * Assumes both cells are `advice` cells
pub fn constrain_equal(&mut self, a: &AssignedValue<F>, b: &AssignedValue<F>) {
if !self.witness_gen_only {
self.copy_manager
.lock()
.unwrap()
.advice_equalities
.push((a.cell.unwrap(), b.cell.unwrap()));
}
}
/// Pushes multiple advice cells to the `advice` column of [Context] and enables them by enabling the corresponding selector specified in `gate_offset`.
///
/// * `inputs`: Iterator that specifies the cells to be assigned
/// * `gate_offsets`: specifies relative offset from current position to enable selector for the gate (e.g., `0` is `inputs[0]`).
/// * `offset` may be negative indexing from the end of the column (e.g., `-1` is the last previously assigned cell)
pub fn assign_region<Q>(
&mut self,
inputs: impl IntoIterator<Item = Q>,
gate_offsets: impl IntoIterator<Item = isize>,
) where
Q: Into<QuantumCell<F>>,
{
if self.witness_gen_only {
for input in inputs {
self.assign_cell(input);
}
} else {
let row_offset = self.advice.len();
// note: row_offset may not equal self.selector.len() at this point if we previously used `load_constant` or `load_witness`
for input in inputs {
self.assign_cell(input);
}
self.selector.resize(self.advice.len(), false);
for offset in gate_offsets {
*self
.selector
.get_mut(row_offset.checked_add_signed(offset).expect("Invalid gate offset"))
.expect("Invalid selector offset") = true;
}
}
}
/// Pushes multiple advice cells to the `advice` column of [Context] and enables them by enabling the corresponding selector specified in `gate_offset` and returns the last assigned cell.
///
/// Assumes `gate_offsets` is the same length as `inputs`
///
/// Returns the last assigned cell
/// * `inputs`: Iterator that specifies the cells to be assigned
/// * `gate_offsets`: specifies indices to enable selector for the gate; assume `gate_offsets` is sorted in increasing order
/// * `offset` may be negative indexing from the end of the column (e.g., `-1` is the last cell)
pub fn assign_region_last<Q>(
&mut self,
inputs: impl IntoIterator<Item = Q>,
gate_offsets: impl IntoIterator<Item = isize>,
) -> AssignedValue<F>
where
Q: Into<QuantumCell<F>>,
{
self.assign_region(inputs, gate_offsets);
self.last().unwrap()
}
/// Pushes multiple advice cells to the `advice` column of [Context] and enables them by enabling the corresponding selector specified in `gate_offset`.
///
/// Allows for the specification of equality constraints between cells at `equality_offsets` within the `advice` column and external advice cells specified in `external_equality` (e.g, Fixed column).
/// * `gate_offsets`: specifies indices to enable selector for the gate;
/// * `offset` may be negative indexing from the end of the column (e.g., `-1` is the last cell)
/// * `equality_offsets`: specifies pairs of indices to constrain equality
/// * `external_equality`: specifies an existing cell to constrain equality with the cell at a certain index
pub fn assign_region_smart<Q>(
&mut self,
inputs: impl IntoIterator<Item = Q>,
gate_offsets: impl IntoIterator<Item = isize>,
equality_offsets: impl IntoIterator<Item = (isize, isize)>,
external_equality: impl IntoIterator<Item = (Option<ContextCell>, isize)>,
) where
Q: Into<QuantumCell<F>>,
{
let row_offset = self.advice.len();
self.assign_region(inputs, gate_offsets);
// note: row_offset may not equal self.selector.len() at this point if we previously used `load_constant` or `load_witness`
// If not in witness generation mode, add equality constraints.
if !self.witness_gen_only {
// Add equality constraints between cells in the advice column.
for (offset1, offset2) in equality_offsets {
self.copy_manager.lock().unwrap().advice_equalities.push((
ContextCell::new(
self.type_id,
self.context_id,
row_offset.wrapping_add_signed(offset1),
),
ContextCell::new(
self.type_id,
self.context_id,
row_offset.wrapping_add_signed(offset2),
),
));
}
// Add equality constraints between cells in the advice column and external cells (Fixed column).
for (cell, offset) in external_equality {
self.copy_manager.lock().unwrap().advice_equalities.push((
cell.unwrap(),
ContextCell::new(
self.type_id,
self.context_id,
row_offset.wrapping_add_signed(offset),
),
));
}
}
}
/// Assigns a region of witness cells in an iterator and returns a [Vec] of assigned cells.
/// * `witnesses`: Iterator that specifies the cells to be assigned
pub fn assign_witnesses(
&mut self,
witnesses: impl IntoIterator<Item = F>,
) -> Vec<AssignedValue<F>> {
let row_offset = self.advice.len();
self.assign_region(witnesses.into_iter().map(QuantumCell::Witness), []);
self.advice[row_offset..]
.iter()
.enumerate()
.map(|(i, v)| {
let cell = (!self.witness_gen_only).then_some(ContextCell::new(
self.type_id,
self.context_id,
row_offset + i,
));
AssignedValue { value: *v, cell }
})
.collect()
}
/// Assigns a witness value and returns the corresponding assigned cell.
/// * `witness`: the witness value to be assigned
pub fn load_witness(&mut self, witness: F) -> AssignedValue<F> {
self.assign_cell(QuantumCell::Witness(witness));
if !self.witness_gen_only {
self.selector.resize(self.advice.len(), false);
}
self.last().unwrap()
}
/// Assigns a constant value and returns the corresponding assigned cell.
/// * `c`: the constant value to be assigned
pub fn load_constant(&mut self, c: F) -> AssignedValue<F> {
self.assign_cell(QuantumCell::Constant(c));
if !self.witness_gen_only {
self.selector.resize(self.advice.len(), false);
}
self.last().unwrap()
}
/// Assigns a list of constant values and returns the corresponding assigned cells.
/// * `c`: the list of constant values to be assigned
pub fn load_constants(&mut self, c: &[F]) -> Vec<AssignedValue<F>> {
c.iter().map(|v| self.load_constant(*v)).collect_vec()
}
/// Assigns the 0 value to a new cell or returns a previously assigned zero cell from `zero_cell`.
pub fn load_zero(&mut self) -> AssignedValue<F> {
if let Some(zcell) = &self.zero_cell {
return *zcell;
}
let zero_cell = self.load_constant(F::ZERO);
self.zero_cell = Some(zero_cell);
zero_cell
}
/// Helper function for debugging using `MockProver`. This adds a constraint that always fails.
/// The `MockProver` will print out the row, column where it fails, so it serves as a debugging "break point"
/// so you can add to your code to search for where the actual constraint failure occurs.
pub fn debug_assert_false(&mut self) {
use rand_chacha::rand_core::OsRng;
let rand1 = self.load_witness(F::random(OsRng));
let rand2 = self.load_witness(F::random(OsRng));
self.constrain_equal(&rand1, &rand2);
}
}