halo2curves/bn256/fq12.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
use super::fq::Fq;
use super::fq2::Fq2;
use super::fq6::Fq6;
use crate::ff_ext::{
quadratic::{QuadExtField, QuadExtFieldArith, QuadSparseMul},
ExtField,
};
/// -GAMMA is a quadratic non-residue in Fp6. Fp12 = Fp6[X]/(X^2 + GAMMA)
/// We introduce the variable w such that w^2 = -GAMMA
// GAMMA = - v
/// An element of Fq12, represented by c0 + c1 * w.
pub type Fq12 = QuadExtField<Fq6>;
impl QuadExtFieldArith for Fq12 {
type Base = Fq6;
}
impl QuadSparseMul for Fq12 {
type Base = Fq2;
}
impl ExtField for Fq12 {
const NON_RESIDUE: Self = Fq12::zero(); // no needs
fn frobenius_map(&mut self, power: usize) {
self.c0.frobenius_map(power);
self.c1.frobenius_map(power);
self.c1.c0.mul_assign(&FROBENIUS_COEFF_FQ12_C1[power % 12]);
self.c1.c1.mul_assign(&FROBENIUS_COEFF_FQ12_C1[power % 12]);
self.c1.c2.mul_assign(&FROBENIUS_COEFF_FQ12_C1[power % 12]);
}
}
crate::impl_binops_additive!(Fq12, Fq12);
crate::impl_binops_multiplicative!(Fq12, Fq12);
crate::impl_binops_calls!(Fq12);
crate::impl_sum_prod!(Fq12);
crate::impl_cyclotomic_square!(Fq2, Fq12);
// non_residue^((modulus^i-1)/6) for i=0,...,11
pub const FROBENIUS_COEFF_FQ12_C1: [Fq2; 12] = [
// Fq2(u + 9)**(((q^0) - 1) / 6)
// Fq points are represented in Montgomery form with R = 2^256
Fq2 {
c0: Fq([
0xd35d438dc58f0d9d,
0x0a78eb28f5c70b3d,
0x666ea36f7879462c,
0x0e0a77c19a07df2f,
]),
c1: Fq([0x0, 0x0, 0x0, 0x0]),
},
// Fq2(u + 9)**(((q^1) - 1) / 6)
Fq2 {
c0: Fq([
0xaf9ba69633144907,
0xca6b1d7387afb78a,
0x11bded5ef08a2087,
0x02f34d751a1f3a7c,
]),
c1: Fq([
0xa222ae234c492d72,
0xd00f02a4565de15b,
0xdc2ff3a253dfc926,
0x10a75716b3899551,
]),
},
// Fq2(u + 9)**(((q^2) - 1) / 6)
Fq2 {
c0: Fq([
0xca8d800500fa1bf2,
0xf0c5d61468b39769,
0x0e201271ad0d4418,
0x04290f65bad856e6,
]),
c1: Fq([0x0, 0x0, 0x0, 0x0]),
},
// Fq2(u + 9)**(((q^3) - 1) / 6)
Fq2 {
c0: Fq([
0x365316184e46d97d,
0x0af7129ed4c96d9f,
0x659da72fca1009b5,
0x08116d8983a20d23,
]),
c1: Fq([
0xb1df4af7c39c1939,
0x3d9f02878a73bf7f,
0x9b2220928caf0ae0,
0x26684515eff054a6,
]),
},
// Fq2(u + 9)**(((q^4) - 1) / 6)
Fq2 {
c0: Fq([
0x3350c88e13e80b9c,
0x7dce557cdb5e56b9,
0x6001b4b8b615564a,
0x2682e617020217e0,
]),
c1: Fq([0x0, 0x0, 0x0, 0x0]),
},
// Fq2(u + 9)**(((q^5) - 1) / 6)
Fq2 {
c0: Fq([
0x86b76f821b329076,
0x408bf52b4d19b614,
0x53dfb9d0d985e92d,
0x051e20146982d2a7,
]),
c1: Fq([
0x0fbc9cd47752ebc7,
0x6d8fffe33415de24,
0xbef22cf038cf41b9,
0x15c0edff3c66bf54,
]),
},
// Fq2(u + 9)**(((q^6) - 1) / 6)
Fq2 {
c0: Fq([
0x68c3488912edefaa,
0x8d087f6872aabf4f,
0x51e1a24709081231,
0x2259d6b14729c0fa,
]),
c1: Fq([0x0, 0x0, 0x0, 0x0]),
},
// Fq2(u + 9)**(((q^7) - 1) / 6)
Fq2 {
c0: Fq([
0x8c84e580a568b440,
0xcd164d1de0c21302,
0xa692585790f737d5,
0x2d7100fdc71265ad,
]),
c1: Fq([
0x99fdddf38c33cfd5,
0xc77267ed1213e931,
0xdc2052142da18f36,
0x1fbcf75c2da80ad7,
]),
},
// Fq2(u + 9)**(((q^8) - 1) / 6)
Fq2 {
c0: Fq([
0x71930c11d782e155,
0xa6bb947cffbe3323,
0xaa303344d4741444,
0x2c3b3f0d26594943,
]),
c1: Fq([0x0, 0x0, 0x0, 0x0]),
},
// Fq2(u + 9)**(((q^9) - 1) / 6)
Fq2 {
c0: Fq([
0x05cd75fe8a3623ca,
0x8c8a57f293a85cee,
0x52b29e86b7714ea8,
0x2852e0e95d8f9306,
]),
c1: Fq([
0x8a41411f14e0e40e,
0x59e26809ddfe0b0d,
0x1d2e2523f4d24d7d,
0x09fc095cf1414b83,
]),
},
// Fq2(u + 9)**(((q^10) - 1) / 6)
Fq2 {
c0: Fq([
0x08cfc388c494f1ab,
0x19b315148d1373d4,
0x584e90fdcb6c0213,
0x09e1685bdf2f8849,
]),
c1: Fq([0x0, 0x0, 0x0, 0x0]),
},
// Fq2(u + 9)**(((q^11) - 1) / 6)
Fq2 {
c0: Fq([
0xb5691c94bd4a6cd1,
0x56f575661b581478,
0x64708be5a7fb6f30,
0x2b462e5e77aecd82,
]),
c1: Fq([
0x2c63ef42612a1180,
0x29f16aae345bec69,
0xf95e18c648b216a4,
0x1aa36073a4cae0d4,
]),
},
];
#[cfg(test)]
mod test {
use super::*;
crate::field_testing_suite!(Fq12, "field_arithmetic");
// extension field-specific
crate::field_testing_suite!(Fq12, "quadratic_sparse_mul", Fq6, Fq2);
crate::field_testing_suite!(
Fq12,
"frobenius",
// Frobenius endomorphism power parameter for extension field
// ϕ: E → E
// (x, y) ↦ (x^p, y^p)
// p: modulus of base field (Here, Fq::MODULUS)
Fq::MODULUS_LIMBS
);
}