ruint/mul.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
use crate::{algorithms, nlimbs, Uint};
use core::{
iter::Product,
num::Wrapping,
ops::{Mul, MulAssign},
};
impl<const BITS: usize, const LIMBS: usize> Uint<BITS, LIMBS> {
/// Computes `self * rhs`, returning [`None`] if overflow occurred.
#[inline(always)]
#[must_use]
pub fn checked_mul(self, rhs: Self) -> Option<Self> {
match self.overflowing_mul(rhs) {
(value, false) => Some(value),
_ => None,
}
}
/// Calculates the multiplication of self and rhs.
///
/// Returns a tuple of the multiplication along with a boolean indicating
/// whether an arithmetic overflow would occur. If an overflow would have
/// occurred then the wrapped value is returned.
///
/// # Examples
///
/// ```
/// # use ruint::{Uint, uint};
/// # uint!{
/// assert_eq!(1_U1.overflowing_mul(1_U1), (1_U1, false));
/// assert_eq!(
/// 0x010000000000000000_U65.overflowing_mul(0x010000000000000000_U65),
/// (0x000000000000000000_U65, true)
/// );
/// # }
/// ```
#[inline]
#[must_use]
pub fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
let mut result = Self::ZERO;
let mut overflow = algorithms::addmul(&mut result.limbs, self.as_limbs(), rhs.as_limbs());
if BITS > 0 {
overflow |= result.limbs[LIMBS - 1] > Self::MASK;
result.limbs[LIMBS - 1] &= Self::MASK;
}
(result, overflow)
}
/// Computes `self * rhs`, saturating at the numeric bounds instead of
/// overflowing.
#[inline(always)]
#[must_use]
pub fn saturating_mul(self, rhs: Self) -> Self {
match self.overflowing_mul(rhs) {
(value, false) => value,
_ => Self::MAX,
}
}
/// Computes `self * rhs`, wrapping around at the boundary of the type.
#[inline(always)]
#[must_use]
pub fn wrapping_mul(self, rhs: Self) -> Self {
let mut result = Self::ZERO;
algorithms::addmul_n(&mut result.limbs, self.as_limbs(), rhs.as_limbs());
if BITS > 0 {
result.limbs[LIMBS - 1] &= Self::MASK;
}
result
}
/// Computes the inverse modulo $2^{\mathtt{BITS}}$ of `self`, returning
/// [`None`] if the inverse does not exist.
#[inline]
#[must_use]
pub fn inv_ring(self) -> Option<Self> {
if BITS == 0 || self.limbs[0] & 1 == 0 {
return None;
}
// Compute inverse of first limb
let mut result = Self::ZERO;
result.limbs[0] = {
const W2: Wrapping<u64> = Wrapping(2);
const W3: Wrapping<u64> = Wrapping(3);
let n = Wrapping(self.limbs[0]);
let mut inv = (n * W3) ^ W2; // Correct on 4 bits.
inv *= W2 - n * inv; // Correct on 8 bits.
inv *= W2 - n * inv; // Correct on 16 bits.
inv *= W2 - n * inv; // Correct on 32 bits.
inv *= W2 - n * inv; // Correct on 64 bits.
debug_assert_eq!(n.0.wrapping_mul(inv.0), 1);
inv.0
};
// Continue with rest of limbs
let mut correct_limbs = 1;
while correct_limbs < LIMBS {
result *= Self::from(2) - self * result;
correct_limbs *= 2;
}
result.limbs[LIMBS - 1] &= Self::MASK;
Some(result)
}
/// Calculates the complete product `self * rhs` without the possibility to
/// overflow.
///
/// The argument `rhs` can be any size [`Uint`], the result size is the sum
/// of the bit-sizes of `self` and `rhs`.
///
/// # Panics
///
/// This function will runtime panic of the const generic arguments are
/// incorrect.
///
/// # Examples
///
/// ```
/// # use ruint::{Uint, uint};
/// # uint!{
/// assert_eq!(0_U0.widening_mul(0_U0), 0_U0);
/// assert_eq!(1_U1.widening_mul(1_U1), 1_U2);
/// assert_eq!(3_U2.widening_mul(7_U3), 21_U5);
/// # }
/// ```
#[inline]
#[must_use]
#[allow(clippy::similar_names)] // Don't confuse `res` and `rhs`.
pub fn widening_mul<
const BITS_RHS: usize,
const LIMBS_RHS: usize,
const BITS_RES: usize,
const LIMBS_RES: usize,
>(
self,
rhs: Uint<BITS_RHS, LIMBS_RHS>,
) -> Uint<BITS_RES, LIMBS_RES> {
assert_eq!(BITS_RES, BITS + BITS_RHS);
assert_eq!(LIMBS_RES, nlimbs(BITS_RES));
let mut result = Uint::<BITS_RES, LIMBS_RES>::ZERO;
algorithms::addmul(&mut result.limbs, self.as_limbs(), rhs.as_limbs());
if LIMBS_RES > 0 {
debug_assert!(result.limbs[LIMBS_RES - 1] <= Uint::<BITS_RES, LIMBS_RES>::MASK);
}
result
}
}
impl<const BITS: usize, const LIMBS: usize> Product<Self> for Uint<BITS, LIMBS> {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
if BITS == 0 {
return Self::ZERO;
}
iter.fold(Self::from(1), Self::wrapping_mul)
}
}
impl<'a, const BITS: usize, const LIMBS: usize> Product<&'a Self> for Uint<BITS, LIMBS> {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
if BITS == 0 {
return Self::ZERO;
}
iter.copied().fold(Self::from(1), Self::wrapping_mul)
}
}
impl_bin_op!(Mul, mul, MulAssign, mul_assign, wrapping_mul);
#[cfg(test)]
mod tests {
use super::*;
use crate::const_for;
use proptest::proptest;
#[test]
fn test_commutative() {
const_for!(BITS in SIZES {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(a: U, b: U)| {
assert_eq!(a * b, b * a);
});
});
}
#[test]
fn test_associative() {
const_for!(BITS in SIZES {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(a: U, b: U, c: U)| {
assert_eq!(a * (b * c), (a * b) * c);
});
});
}
#[test]
fn test_distributive() {
const_for!(BITS in SIZES {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(a: U, b: U, c: U)| {
assert_eq!(a * (b + c), (a * b) + (a *c));
});
});
}
#[test]
fn test_identity() {
const_for!(BITS in NON_ZERO {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(value: U)| {
assert_eq!(value * U::from(0), U::ZERO);
assert_eq!(value * U::from(1), value);
});
});
}
#[test]
fn test_inverse() {
const_for!(BITS in NON_ZERO {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(mut a: U)| {
a |= U::from(1); // Make sure a is invertible
assert_eq!(a * a.inv_ring().unwrap(), U::from(1));
assert_eq!(a.inv_ring().unwrap().inv_ring().unwrap(), a);
});
});
}
#[test]
fn test_widening_mul() {
// Left hand side
const_for!(BITS_LHS in BENCH {
const LIMBS_LHS: usize = nlimbs(BITS_LHS);
type Lhs = Uint<BITS_LHS, LIMBS_LHS>;
// Right hand side
const_for!(BITS_RHS in BENCH {
const LIMBS_RHS: usize = nlimbs(BITS_RHS);
type Rhs = Uint<BITS_RHS, LIMBS_RHS>;
// Result
const BITS_RES: usize = BITS_LHS + BITS_RHS;
const LIMBS_RES: usize = nlimbs(BITS_RES);
type Res = Uint<BITS_RES, LIMBS_RES>;
proptest!(|(lhs: Lhs, rhs: Rhs)| {
// Compute the result using the target size
let expected = Res::from(lhs) * Res::from(rhs);
assert_eq!(lhs.widening_mul(rhs), expected);
});
});
});
}
}