ruint/
mul.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
use crate::{algorithms, nlimbs, Uint};
use core::{
    iter::Product,
    num::Wrapping,
    ops::{Mul, MulAssign},
};

impl<const BITS: usize, const LIMBS: usize> Uint<BITS, LIMBS> {
    /// Computes `self * rhs`, returning [`None`] if overflow occurred.
    #[inline(always)]
    #[must_use]
    pub fn checked_mul(self, rhs: Self) -> Option<Self> {
        match self.overflowing_mul(rhs) {
            (value, false) => Some(value),
            _ => None,
        }
    }

    /// Calculates the multiplication of self and rhs.
    ///
    /// Returns a tuple of the multiplication along with a boolean indicating
    /// whether an arithmetic overflow would occur. If an overflow would have
    /// occurred then the wrapped value is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// # use ruint::{Uint, uint};
    /// # uint!{
    /// assert_eq!(1_U1.overflowing_mul(1_U1), (1_U1, false));
    /// assert_eq!(
    ///     0x010000000000000000_U65.overflowing_mul(0x010000000000000000_U65),
    ///     (0x000000000000000000_U65, true)
    /// );
    /// # }
    /// ```
    #[inline]
    #[must_use]
    pub fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
        let mut result = Self::ZERO;
        let mut overflow = algorithms::addmul(&mut result.limbs, self.as_limbs(), rhs.as_limbs());
        if BITS > 0 {
            overflow |= result.limbs[LIMBS - 1] > Self::MASK;
            result.limbs[LIMBS - 1] &= Self::MASK;
        }
        (result, overflow)
    }

    /// Computes `self * rhs`, saturating at the numeric bounds instead of
    /// overflowing.
    #[inline(always)]
    #[must_use]
    pub fn saturating_mul(self, rhs: Self) -> Self {
        match self.overflowing_mul(rhs) {
            (value, false) => value,
            _ => Self::MAX,
        }
    }

    /// Computes `self * rhs`, wrapping around at the boundary of the type.
    #[inline(always)]
    #[must_use]
    pub fn wrapping_mul(self, rhs: Self) -> Self {
        let mut result = Self::ZERO;
        algorithms::addmul_n(&mut result.limbs, self.as_limbs(), rhs.as_limbs());
        if BITS > 0 {
            result.limbs[LIMBS - 1] &= Self::MASK;
        }
        result
    }

    /// Computes the inverse modulo $2^{\mathtt{BITS}}$ of `self`, returning
    /// [`None`] if the inverse does not exist.
    #[inline]
    #[must_use]
    pub fn inv_ring(self) -> Option<Self> {
        if BITS == 0 || self.limbs[0] & 1 == 0 {
            return None;
        }

        // Compute inverse of first limb
        let mut result = Self::ZERO;
        result.limbs[0] = {
            const W2: Wrapping<u64> = Wrapping(2);
            const W3: Wrapping<u64> = Wrapping(3);
            let n = Wrapping(self.limbs[0]);
            let mut inv = (n * W3) ^ W2; // Correct on 4 bits.
            inv *= W2 - n * inv; // Correct on 8 bits.
            inv *= W2 - n * inv; // Correct on 16 bits.
            inv *= W2 - n * inv; // Correct on 32 bits.
            inv *= W2 - n * inv; // Correct on 64 bits.
            debug_assert_eq!(n.0.wrapping_mul(inv.0), 1);
            inv.0
        };

        // Continue with rest of limbs
        let mut correct_limbs = 1;
        while correct_limbs < LIMBS {
            result *= Self::from(2) - self * result;
            correct_limbs *= 2;
        }
        result.limbs[LIMBS - 1] &= Self::MASK;

        Some(result)
    }

    /// Calculates the complete product `self * rhs` without the possibility to
    /// overflow.
    ///
    /// The argument `rhs` can be any size [`Uint`], the result size is the sum
    /// of the bit-sizes of `self` and `rhs`.
    ///
    /// # Panics
    ///
    /// This function will runtime panic of the const generic arguments are
    /// incorrect.
    ///
    /// # Examples
    ///
    /// ```
    /// # use ruint::{Uint, uint};
    /// # uint!{
    /// assert_eq!(0_U0.widening_mul(0_U0), 0_U0);
    /// assert_eq!(1_U1.widening_mul(1_U1), 1_U2);
    /// assert_eq!(3_U2.widening_mul(7_U3), 21_U5);
    /// # }
    /// ```
    #[inline]
    #[must_use]
    #[allow(clippy::similar_names)] // Don't confuse `res` and `rhs`.
    pub fn widening_mul<
        const BITS_RHS: usize,
        const LIMBS_RHS: usize,
        const BITS_RES: usize,
        const LIMBS_RES: usize,
    >(
        self,
        rhs: Uint<BITS_RHS, LIMBS_RHS>,
    ) -> Uint<BITS_RES, LIMBS_RES> {
        assert_eq!(BITS_RES, BITS + BITS_RHS);
        assert_eq!(LIMBS_RES, nlimbs(BITS_RES));
        let mut result = Uint::<BITS_RES, LIMBS_RES>::ZERO;
        algorithms::addmul(&mut result.limbs, self.as_limbs(), rhs.as_limbs());
        if LIMBS_RES > 0 {
            debug_assert!(result.limbs[LIMBS_RES - 1] <= Uint::<BITS_RES, LIMBS_RES>::MASK);
        }

        result
    }
}

impl<const BITS: usize, const LIMBS: usize> Product<Self> for Uint<BITS, LIMBS> {
    #[inline]
    fn product<I>(iter: I) -> Self
    where
        I: Iterator<Item = Self>,
    {
        if BITS == 0 {
            return Self::ZERO;
        }
        iter.fold(Self::from(1), Self::wrapping_mul)
    }
}

impl<'a, const BITS: usize, const LIMBS: usize> Product<&'a Self> for Uint<BITS, LIMBS> {
    #[inline]
    fn product<I>(iter: I) -> Self
    where
        I: Iterator<Item = &'a Self>,
    {
        if BITS == 0 {
            return Self::ZERO;
        }
        iter.copied().fold(Self::from(1), Self::wrapping_mul)
    }
}

impl_bin_op!(Mul, mul, MulAssign, mul_assign, wrapping_mul);

#[cfg(test)]
mod tests {
    use super::*;
    use crate::const_for;
    use proptest::proptest;

    #[test]
    fn test_commutative() {
        const_for!(BITS in SIZES {
            const LIMBS: usize = nlimbs(BITS);
            type U = Uint<BITS, LIMBS>;
            proptest!(|(a: U, b: U)| {
                assert_eq!(a * b, b * a);
            });
        });
    }

    #[test]
    fn test_associative() {
        const_for!(BITS in SIZES {
            const LIMBS: usize = nlimbs(BITS);
            type U = Uint<BITS, LIMBS>;
            proptest!(|(a: U, b: U, c: U)| {
                assert_eq!(a * (b * c), (a * b) * c);
            });
        });
    }

    #[test]
    fn test_distributive() {
        const_for!(BITS in SIZES {
            const LIMBS: usize = nlimbs(BITS);
            type U = Uint<BITS, LIMBS>;
            proptest!(|(a: U, b: U, c: U)| {
                assert_eq!(a * (b + c), (a * b) + (a *c));
            });
        });
    }

    #[test]
    fn test_identity() {
        const_for!(BITS in NON_ZERO {
            const LIMBS: usize = nlimbs(BITS);
            type U = Uint<BITS, LIMBS>;
            proptest!(|(value: U)| {
                assert_eq!(value * U::from(0), U::ZERO);
                assert_eq!(value * U::from(1), value);
            });
        });
    }

    #[test]
    fn test_inverse() {
        const_for!(BITS in NON_ZERO {
            const LIMBS: usize = nlimbs(BITS);
            type U = Uint<BITS, LIMBS>;
            proptest!(|(mut a: U)| {
                a |= U::from(1); // Make sure a is invertible
                assert_eq!(a * a.inv_ring().unwrap(), U::from(1));
                assert_eq!(a.inv_ring().unwrap().inv_ring().unwrap(), a);
            });
        });
    }

    #[test]
    fn test_widening_mul() {
        // Left hand side
        const_for!(BITS_LHS in BENCH {
            const LIMBS_LHS: usize = nlimbs(BITS_LHS);
            type Lhs = Uint<BITS_LHS, LIMBS_LHS>;

            // Right hand side
            const_for!(BITS_RHS in BENCH {
                const LIMBS_RHS: usize = nlimbs(BITS_RHS);
                type Rhs = Uint<BITS_RHS, LIMBS_RHS>;

                // Result
                const BITS_RES: usize = BITS_LHS + BITS_RHS;
                const LIMBS_RES: usize = nlimbs(BITS_RES);
                type Res = Uint<BITS_RES, LIMBS_RES>;

                proptest!(|(lhs: Lhs, rhs: Rhs)| {
                    // Compute the result using the target size
                    let expected = Res::from(lhs) * Res::from(rhs);
                    assert_eq!(lhs.widening_mul(rhs), expected);
                });
            });
        });
    }
}