halo2_proofs/poly/multiopen/
prover.rsuse super::super::{
commitment::{self, Blind, Params},
Coeff, Polynomial,
};
use super::{
construct_intermediate_sets, ChallengeX1, ChallengeX2, ChallengeX3, ChallengeX4, ProverQuery,
Query,
};
use crate::arithmetic::{eval_polynomial, kate_division, CurveAffine, FieldExt};
use crate::transcript::{EncodedChallenge, TranscriptWrite};
use ff::Field;
use group::Curve;
use rand_core::RngCore;
use std::io;
use std::marker::PhantomData;
pub fn create_proof<
'a,
I,
C: CurveAffine,
E: EncodedChallenge<C>,
R: RngCore,
T: TranscriptWrite<C, E>,
>(
params: &Params<C>,
mut rng: R,
transcript: &mut T,
queries: I,
) -> io::Result<()>
where
I: IntoIterator<Item = ProverQuery<'a, C>> + Clone,
{
let x_1: ChallengeX1<_> = transcript.squeeze_challenge_scalar();
let x_2: ChallengeX2<_> = transcript.squeeze_challenge_scalar();
let (poly_map, point_sets) = construct_intermediate_sets(queries);
let mut q_polys: Vec<Option<Polynomial<C::Scalar, Coeff>>> = vec![None; point_sets.len()];
let mut q_blinds = vec![Blind(C::Scalar::zero()); point_sets.len()];
{
let mut accumulate =
|set_idx: usize, new_poly: &Polynomial<C::Scalar, Coeff>, blind: Blind<C::Scalar>| {
if let Some(poly) = &q_polys[set_idx] {
q_polys[set_idx] = Some(poly.clone() * *x_1 + new_poly);
} else {
q_polys[set_idx] = Some(new_poly.clone());
}
q_blinds[set_idx] *= *x_1;
q_blinds[set_idx] += blind;
};
for commitment_data in poly_map.into_iter() {
accumulate(
commitment_data.set_index, commitment_data.commitment.poly, commitment_data.commitment.blind, );
}
}
let q_prime_poly = point_sets
.iter()
.zip(q_polys.iter())
.fold(None, |q_prime_poly, (points, poly)| {
let mut poly = points
.iter()
.fold(poly.clone().unwrap().values, |poly, point| {
kate_division(&poly, *point)
});
poly.resize(params.n as usize, C::Scalar::zero());
let poly = Polynomial {
values: poly,
_marker: PhantomData,
};
if q_prime_poly.is_none() {
Some(poly)
} else {
q_prime_poly.map(|q_prime_poly| q_prime_poly * *x_2 + &poly)
}
})
.unwrap();
let q_prime_blind = Blind(C::Scalar::random(&mut rng));
let q_prime_commitment = params.commit(&q_prime_poly, q_prime_blind).to_affine();
transcript.write_point(q_prime_commitment)?;
let x_3: ChallengeX3<_> = transcript.squeeze_challenge_scalar();
for q_i_poly in &q_polys {
transcript.write_scalar(eval_polynomial(q_i_poly.as_ref().unwrap(), *x_3))?;
}
let x_4: ChallengeX4<_> = transcript.squeeze_challenge_scalar();
let (p_poly, p_poly_blind) = q_polys.into_iter().zip(q_blinds.into_iter()).fold(
(q_prime_poly, q_prime_blind),
|(q_prime_poly, q_prime_blind), (poly, blind)| {
(
q_prime_poly * *x_4 + &poly.unwrap(),
Blind((q_prime_blind.0 * &(*x_4)) + &blind.0),
)
},
);
commitment::create_proof(params, rng, transcript, &p_poly, p_poly_blind, *x_3)
}
#[doc(hidden)]
#[derive(Copy, Clone)]
pub struct PolynomialPointer<'a, C: CurveAffine> {
poly: &'a Polynomial<C::Scalar, Coeff>,
blind: commitment::Blind<C::Scalar>,
}
impl<'a, C: CurveAffine> PartialEq for PolynomialPointer<'a, C> {
fn eq(&self, other: &Self) -> bool {
std::ptr::eq(self.poly, other.poly)
}
}
impl<'a, C: CurveAffine> Query<C::Scalar> for ProverQuery<'a, C> {
type Commitment = PolynomialPointer<'a, C>;
type Eval = ();
fn get_point(&self) -> C::Scalar {
self.point
}
fn get_eval(&self) {}
fn get_commitment(&self) -> Self::Commitment {
PolynomialPointer {
poly: self.poly,
blind: self.blind,
}
}
}