itertools/combinations.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
use std::fmt;
use std::iter::FusedIterator;
use super::lazy_buffer::LazyBuffer;
use alloc::vec::Vec;
use crate::adaptors::checked_binomial;
/// An iterator to iterate through all the `k`-length combinations in an iterator.
///
/// See [`.combinations()`](crate::Itertools::combinations) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Combinations<I: Iterator> {
indices: Vec<usize>,
pool: LazyBuffer<I>,
first: bool,
}
impl<I> Clone for Combinations<I>
where
I: Clone + Iterator,
I::Item: Clone,
{
clone_fields!(indices, pool, first);
}
impl<I> fmt::Debug for Combinations<I>
where
I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
{
debug_fmt_fields!(Combinations, indices, pool, first);
}
/// Create a new `Combinations` from a clonable iterator.
pub fn combinations<I>(iter: I, k: usize) -> Combinations<I>
where
I: Iterator,
{
Combinations {
indices: (0..k).collect(),
pool: LazyBuffer::new(iter),
first: true,
}
}
impl<I: Iterator> Combinations<I> {
/// Returns the length of a combination produced by this iterator.
#[inline]
pub fn k(&self) -> usize {
self.indices.len()
}
/// Returns the (current) length of the pool from which combination elements are
/// selected. This value can change between invocations of [`next`](Combinations::next).
#[inline]
pub fn n(&self) -> usize {
self.pool.len()
}
/// Returns a reference to the source pool.
#[inline]
pub(crate) fn src(&self) -> &LazyBuffer<I> {
&self.pool
}
/// Resets this `Combinations` back to an initial state for combinations of length
/// `k` over the same pool data source. If `k` is larger than the current length
/// of the data pool an attempt is made to prefill the pool so that it holds `k`
/// elements.
pub(crate) fn reset(&mut self, k: usize) {
self.first = true;
if k < self.indices.len() {
self.indices.truncate(k);
for i in 0..k {
self.indices[i] = i;
}
} else {
for i in 0..self.indices.len() {
self.indices[i] = i;
}
self.indices.extend(self.indices.len()..k);
self.pool.prefill(k);
}
}
pub(crate) fn n_and_count(self) -> (usize, usize) {
let Self {
indices,
pool,
first,
} = self;
let n = pool.count();
(n, remaining_for(n, first, &indices).unwrap())
}
/// Initialises the iterator by filling a buffer with elements from the
/// iterator. Returns true if there are no combinations, false otherwise.
fn init(&mut self) -> bool {
self.pool.prefill(self.k());
let done = self.k() > self.n();
if !done {
self.first = false;
}
done
}
/// Increments indices representing the combination to advance to the next
/// (in lexicographic order by increasing sequence) combination. For example
/// if we have n=4 & k=2 then `[0, 1] -> [0, 2] -> [0, 3] -> [1, 2] -> ...`
///
/// Returns true if we've run out of combinations, false otherwise.
fn increment_indices(&mut self) -> bool {
if self.indices.is_empty() {
return true; // Done
}
// Scan from the end, looking for an index to increment
let mut i: usize = self.indices.len() - 1;
// Check if we need to consume more from the iterator
if self.indices[i] == self.pool.len() - 1 {
self.pool.get_next(); // may change pool size
}
while self.indices[i] == i + self.pool.len() - self.indices.len() {
if i > 0 {
i -= 1;
} else {
// Reached the last combination
return true;
}
}
// Increment index, and reset the ones to its right
self.indices[i] += 1;
for j in i + 1..self.indices.len() {
self.indices[j] = self.indices[j - 1] + 1;
}
// If we've made it this far, we haven't run out of combos
false
}
/// Returns the n-th item or the number of successful steps.
pub(crate) fn try_nth(&mut self, n: usize) -> Result<<Self as Iterator>::Item, usize>
where
I::Item: Clone,
{
let done = if self.first {
self.init()
} else {
self.increment_indices()
};
if done {
return Err(0);
}
for i in 0..n {
if self.increment_indices() {
return Err(i + 1);
}
}
Ok(self.pool.get_at(&self.indices))
}
}
impl<I> Iterator for Combinations<I>
where
I: Iterator,
I::Item: Clone,
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
let done = if self.first {
self.init()
} else {
self.increment_indices()
};
if done {
return None;
}
Some(self.pool.get_at(&self.indices))
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.try_nth(n).ok()
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (mut low, mut upp) = self.pool.size_hint();
low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX);
upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices));
(low, upp)
}
#[inline]
fn count(self) -> usize {
self.n_and_count().1
}
}
impl<I> FusedIterator for Combinations<I>
where
I: Iterator,
I::Item: Clone,
{
}
/// For a given size `n`, return the count of remaining combinations or None if it would overflow.
fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
let k = indices.len();
if n < k {
Some(0)
} else if first {
checked_binomial(n, k)
} else {
// https://en.wikipedia.org/wiki/Combinatorial_number_system
// http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf
// The combinations generated after the current one can be counted by counting as follows:
// - The subsequent combinations that differ in indices[0]:
// If subsequent combinations differ in indices[0], then their value for indices[0]
// must be at least 1 greater than the current indices[0].
// As indices is strictly monotonically sorted, this means we can effectively choose k values
// from (n - 1 - indices[0]), leading to binomial(n - 1 - indices[0], k) possibilities.
// - The subsequent combinations with same indices[0], but differing indices[1]:
// Here we can choose k - 1 values from (n - 1 - indices[1]) values,
// leading to binomial(n - 1 - indices[1], k - 1) possibilities.
// - (...)
// - The subsequent combinations with same indices[0..=i], but differing indices[i]:
// Here we can choose k - i values from (n - 1 - indices[i]) values: binomial(n - 1 - indices[i], k - i).
// Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
// Below, `n0` resembles indices[i].
indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
sum.checked_add(checked_binomial(n - 1 - *n0, k - i)?)
})
}
}