1use super::fp::Fp;
4use super::fp12::Fp12;
5use super::fp2::Fp2;
6use super::fp6::Fp6;
7use super::{G1Affine, G1Projective, G2Affine, G2Projective, Scalar, BLS_X, BLS_X_IS_NEGATIVE};
8
9use core::borrow::Borrow;
10use core::fmt;
11use core::iter::Sum;
12use core::ops::{Add, AddAssign, Mul, Neg, Sub};
13use group::Group;
14use pairing::{Engine, MultiMillerLoop, PairingCurveAffine};
15use rand_core::RngCore;
16use subtle::{Choice, ConditionallySelectable, ConstantTimeEq};
17
18use crate::{
19 impl_add_binop_specify_output, impl_binops_additive, impl_binops_additive_specify_output,
20 impl_binops_multiplicative, impl_binops_multiplicative_mixed, impl_sub_binop_specify_output,
21};
22
23#[cfg_attr(docsrs, doc(cfg(feature = "pairings")))]
27#[derive(Copy, Clone, Debug)]
28pub struct MillerLoopResult(pub(crate) Fp12);
29
30impl Default for MillerLoopResult {
31 fn default() -> Self {
32 MillerLoopResult(Fp12::one())
33 }
34}
35
36#[cfg(feature = "zeroize")]
37impl zeroize::DefaultIsZeroes for MillerLoopResult {}
38
39impl ConditionallySelectable for MillerLoopResult {
40 fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
41 MillerLoopResult(Fp12::conditional_select(&a.0, &b.0, choice))
42 }
43}
44
45impl MillerLoopResult {
46 pub fn final_exponentiation(&self) -> Gt {
51 #[must_use]
52 fn fp4_square(a: Fp2, b: Fp2) -> (Fp2, Fp2) {
53 let t0 = a.square();
54 let t1 = b.square();
55 let mut t2 = t1.mul_by_nonresidue();
56 let c0 = t2 + t0;
57 t2 = a + b;
58 t2 = t2.square();
59 t2 -= t0;
60 let c1 = t2 - t1;
61
62 (c0, c1)
63 }
64 #[must_use]
68 fn cyclotomic_square(f: Fp12) -> Fp12 {
69 let mut z0 = f.c0.c0;
70 let mut z4 = f.c0.c1;
71 let mut z3 = f.c0.c2;
72 let mut z2 = f.c1.c0;
73 let mut z1 = f.c1.c1;
74 let mut z5 = f.c1.c2;
75
76 let (t0, t1) = fp4_square(z0, z1);
77
78 z0 = t0 - z0;
80 z0 = z0 + z0 + t0;
81
82 z1 = t1 + z1;
83 z1 = z1 + z1 + t1;
84
85 let (mut t0, t1) = fp4_square(z2, z3);
86 let (t2, t3) = fp4_square(z4, z5);
87
88 z4 = t0 - z4;
90 z4 = z4 + z4 + t0;
91
92 z5 = t1 + z5;
93 z5 = z5 + z5 + t1;
94
95 t0 = t3.mul_by_nonresidue();
97 z2 = t0 + z2;
98 z2 = z2 + z2 + t0;
99
100 z3 = t2 - z3;
101 z3 = z3 + z3 + t2;
102
103 Fp12 {
104 c0: Fp6 {
105 c0: z0,
106 c1: z4,
107 c2: z3,
108 },
109 c1: Fp6 {
110 c0: z2,
111 c1: z1,
112 c2: z5,
113 },
114 }
115 }
116 #[must_use]
117 fn cycolotomic_exp(f: Fp12) -> Fp12 {
118 let x = BLS_X;
119 let mut tmp = Fp12::one();
120 let mut found_one = false;
121 for i in (0..64).rev().map(|b| ((x >> b) & 1) == 1) {
122 if found_one {
123 tmp = cyclotomic_square(tmp)
124 } else {
125 found_one = i;
126 }
127
128 if i {
129 tmp *= f;
130 }
131 }
132
133 tmp.conjugate()
134 }
135
136 let mut f = self.0;
137 let mut t0 = f
138 .frobenius_map()
139 .frobenius_map()
140 .frobenius_map()
141 .frobenius_map()
142 .frobenius_map()
143 .frobenius_map();
144 Gt(f.invert()
145 .map(|mut t1| {
146 let mut t2 = t0 * t1;
147 t1 = t2;
148 t2 = t2.frobenius_map().frobenius_map();
149 t2 *= t1;
150 t1 = cyclotomic_square(t2).conjugate();
151 let mut t3 = cycolotomic_exp(t2);
152 let mut t4 = cyclotomic_square(t3);
153 let mut t5 = t1 * t3;
154 t1 = cycolotomic_exp(t5);
155 t0 = cycolotomic_exp(t1);
156 let mut t6 = cycolotomic_exp(t0);
157 t6 *= t4;
158 t4 = cycolotomic_exp(t6);
159 t5 = t5.conjugate();
160 t4 *= t5 * t2;
161 t5 = t2.conjugate();
162 t1 *= t2;
163 t1 = t1.frobenius_map().frobenius_map().frobenius_map();
164 t6 *= t5;
165 t6 = t6.frobenius_map();
166 t3 *= t0;
167 t3 = t3.frobenius_map().frobenius_map();
168 t3 *= t1;
169 t3 *= t6;
170 f = t3 * t4;
171
172 f
173 })
174 .unwrap())
178 }
179}
180
181impl<'a, 'b> Add<&'b MillerLoopResult> for &'a MillerLoopResult {
182 type Output = MillerLoopResult;
183
184 #[inline]
185 fn add(self, rhs: &'b MillerLoopResult) -> MillerLoopResult {
186 MillerLoopResult(self.0 * rhs.0)
187 }
188}
189
190impl_add_binop_specify_output!(MillerLoopResult, MillerLoopResult, MillerLoopResult);
191
192impl AddAssign<MillerLoopResult> for MillerLoopResult {
193 #[inline]
194 fn add_assign(&mut self, rhs: MillerLoopResult) {
195 *self = *self + rhs;
196 }
197}
198
199impl<'b> AddAssign<&'b MillerLoopResult> for MillerLoopResult {
200 #[inline]
201 fn add_assign(&mut self, rhs: &'b MillerLoopResult) {
202 *self = *self + rhs;
203 }
204}
205
206#[cfg_attr(docsrs, doc(cfg(feature = "pairings")))]
212#[derive(Copy, Clone, Debug)]
213pub struct Gt(pub(crate) Fp12);
214
215impl Default for Gt {
216 fn default() -> Self {
217 Self::identity()
218 }
219}
220
221#[cfg(feature = "zeroize")]
222impl zeroize::DefaultIsZeroes for Gt {}
223
224impl fmt::Display for Gt {
225 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
226 write!(f, "{self:?}")
227 }
228}
229
230impl ConstantTimeEq for Gt {
231 fn ct_eq(&self, other: &Self) -> Choice {
232 self.0.ct_eq(&other.0)
233 }
234}
235
236impl ConditionallySelectable for Gt {
237 fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
238 Gt(Fp12::conditional_select(&a.0, &b.0, choice))
239 }
240}
241
242impl Eq for Gt {}
243impl PartialEq for Gt {
244 #[inline]
245 fn eq(&self, other: &Self) -> bool {
246 bool::from(self.ct_eq(other))
247 }
248}
249
250impl Gt {
251 pub fn identity() -> Gt {
253 Gt(Fp12::one())
254 }
255
256 pub fn double(&self) -> Gt {
258 Gt(self.0.square())
259 }
260}
261
262impl<'a> Neg for &'a Gt {
263 type Output = Gt;
264
265 #[inline]
266 fn neg(self) -> Gt {
267 Gt(self.0.conjugate())
269 }
270}
271
272impl Neg for Gt {
273 type Output = Gt;
274
275 #[inline]
276 fn neg(self) -> Gt {
277 -&self
278 }
279}
280
281impl<'a, 'b> Add<&'b Gt> for &'a Gt {
282 type Output = Gt;
283
284 #[inline]
285 fn add(self, rhs: &'b Gt) -> Gt {
286 Gt(self.0 * rhs.0)
287 }
288}
289
290impl<'a, 'b> Sub<&'b Gt> for &'a Gt {
291 type Output = Gt;
292
293 #[inline]
294 fn sub(self, rhs: &'b Gt) -> Gt {
295 self + (-rhs)
296 }
297}
298
299impl<'a, 'b> Mul<&'b Scalar> for &'a Gt {
300 type Output = Gt;
301
302 fn mul(self, other: &'b Scalar) -> Self::Output {
303 let mut acc = Gt::identity();
304
305 for bit in other
312 .to_bytes()
313 .iter()
314 .rev()
315 .flat_map(|byte| (0..8).rev().map(move |i| Choice::from((byte >> i) & 1u8)))
316 .skip(1)
317 {
318 acc = acc.double();
319 acc = Gt::conditional_select(&acc, &(acc + self), bit);
320 }
321
322 acc
323 }
324}
325
326impl_binops_additive!(Gt, Gt);
327impl_binops_multiplicative!(Gt, Scalar);
328
329impl<T> Sum<T> for Gt
330where
331 T: Borrow<Gt>,
332{
333 fn sum<I>(iter: I) -> Self
334 where
335 I: Iterator<Item = T>,
336 {
337 iter.fold(Self::identity(), |acc, item| acc + item.borrow())
338 }
339}
340
341impl Group for Gt {
342 type Scalar = Scalar;
343
344 fn random(mut rng: impl RngCore) -> Self {
345 loop {
346 let inner = Fp12::random(&mut rng);
347
348 if !bool::from(inner.is_zero()) {
352 return MillerLoopResult(inner).final_exponentiation();
353 }
354 }
355 }
356
357 fn identity() -> Self {
358 Self::identity()
359 }
360
361 fn generator() -> Self {
362 Gt(Fp12 {
364 c0: Fp6 {
365 c0: Fp2 {
366 c0: Fp::from_raw_unchecked([
367 0x1972_e433_a01f_85c5,
368 0x97d3_2b76_fd77_2538,
369 0xc8ce_546f_c96b_cdf9,
370 0xcef6_3e73_66d4_0614,
371 0xa611_3427_8184_3780,
372 0x13f3_448a_3fc6_d825,
373 ]),
374 c1: Fp::from_raw_unchecked([
375 0xd263_31b0_2e9d_6995,
376 0x9d68_a482_f779_7e7d,
377 0x9c9b_2924_8d39_ea92,
378 0xf480_1ca2_e131_07aa,
379 0xa16c_0732_bdbc_b066,
380 0x083c_a4af_ba36_0478,
381 ]),
382 },
383 c1: Fp2 {
384 c0: Fp::from_raw_unchecked([
385 0x59e2_61db_0916_b641,
386 0x2716_b6f4_b23e_960d,
387 0xc8e5_5b10_a0bd_9c45,
388 0x0bdb_0bd9_9c4d_eda8,
389 0x8cf8_9ebf_57fd_aac5,
390 0x12d6_b792_9e77_7a5e,
391 ]),
392 c1: Fp::from_raw_unchecked([
393 0x5fc8_5188_b0e1_5f35,
394 0x34a0_6e3a_8f09_6365,
395 0xdb31_26a6_e02a_d62c,
396 0xfc6f_5aa9_7d9a_990b,
397 0xa12f_55f5_eb89_c210,
398 0x1723_703a_926f_8889,
399 ]),
400 },
401 c2: Fp2 {
402 c0: Fp::from_raw_unchecked([
403 0x9358_8f29_7182_8778,
404 0x43f6_5b86_11ab_7585,
405 0x3183_aaf5_ec27_9fdf,
406 0xfa73_d7e1_8ac9_9df6,
407 0x64e1_76a6_a64c_99b0,
408 0x179f_a78c_5838_8f1f,
409 ]),
410 c1: Fp::from_raw_unchecked([
411 0x672a_0a11_ca2a_ef12,
412 0x0d11_b9b5_2aa3_f16b,
413 0xa444_12d0_699d_056e,
414 0xc01d_0177_221a_5ba5,
415 0x66e0_cede_6c73_5529,
416 0x05f5_a71e_9fdd_c339,
417 ]),
418 },
419 },
420 c1: Fp6 {
421 c0: Fp2 {
422 c0: Fp::from_raw_unchecked([
423 0xd30a_88a1_b062_c679,
424 0x5ac5_6a5d_35fc_8304,
425 0xd0c8_34a6_a81f_290d,
426 0xcd54_30c2_da37_07c7,
427 0xf0c2_7ff7_8050_0af0,
428 0x0924_5da6_e2d7_2eae,
429 ]),
430 c1: Fp::from_raw_unchecked([
431 0x9f2e_0676_791b_5156,
432 0xe2d1_c823_4918_fe13,
433 0x4c9e_459f_3c56_1bf4,
434 0xa3e8_5e53_b9d3_e3c1,
435 0x820a_121e_21a7_0020,
436 0x15af_6183_41c5_9acc,
437 ]),
438 },
439 c1: Fp2 {
440 c0: Fp::from_raw_unchecked([
441 0x7c95_658c_2499_3ab1,
442 0x73eb_3872_1ca8_86b9,
443 0x5256_d749_4774_34bc,
444 0x8ba4_1902_ea50_4a8b,
445 0x04a3_d3f8_0c86_ce6d,
446 0x18a6_4a87_fb68_6eaa,
447 ]),
448 c1: Fp::from_raw_unchecked([
449 0xbb83_e71b_b920_cf26,
450 0x2a52_77ac_92a7_3945,
451 0xfc0e_e59f_94f0_46a0,
452 0x7158_cdf3_7860_58f7,
453 0x7cc1_061b_82f9_45f6,
454 0x03f8_47aa_9fdb_e567,
455 ]),
456 },
457 c2: Fp2 {
458 c0: Fp::from_raw_unchecked([
459 0x8078_dba5_6134_e657,
460 0x1cd7_ec9a_4399_8a6e,
461 0xb1aa_599a_1a99_3766,
462 0xc9a0_f62f_0842_ee44,
463 0x8e15_9be3_b605_dffa,
464 0x0c86_ba0d_4af1_3fc2,
465 ]),
466 c1: Fp::from_raw_unchecked([
467 0xe80f_f2a0_6a52_ffb1,
468 0x7694_ca48_721a_906c,
469 0x7583_183e_03b0_8514,
470 0xf567_afdd_40ce_e4e2,
471 0x9a6d_96d2_e526_a5fc,
472 0x197e_9f49_861f_2242,
473 ]),
474 },
475 },
476 })
477 }
478
479 fn is_identity(&self) -> Choice {
480 self.ct_eq(&Self::identity())
481 }
482
483 #[must_use]
484 fn double(&self) -> Self {
485 self.double()
486 }
487}
488
489#[derive(Clone, Debug)]
490pub struct G2Prepared {
497 infinity: Choice,
498 coeffs: Vec<(Fp2, Fp2, Fp2)>,
499}
500
501impl From<G2Affine> for G2Prepared {
502 fn from(q: G2Affine) -> G2Prepared {
503 struct Adder {
504 cur: G2Projective,
505 base: G2Affine,
506 coeffs: Vec<(Fp2, Fp2, Fp2)>,
507 }
508
509 impl MillerLoopDriver for Adder {
510 type Output = ();
511
512 fn doubling_step(&mut self, _: Self::Output) -> Self::Output {
513 let coeffs = doubling_step(&mut self.cur);
514 self.coeffs.push(coeffs);
515 }
516 fn addition_step(&mut self, _: Self::Output) -> Self::Output {
517 let coeffs = addition_step(&mut self.cur, &self.base);
518 self.coeffs.push(coeffs);
519 }
520 fn square_output(_: Self::Output) -> Self::Output {}
521 fn conjugate(_: Self::Output) -> Self::Output {}
522 fn one() -> Self::Output {}
523 }
524
525 let is_identity = q.is_identity();
526 let q = G2Affine::conditional_select(&q, &G2Affine::generator(), is_identity);
527
528 let mut adder = Adder {
529 cur: G2Projective::from(q),
530 base: q,
531 coeffs: Vec::with_capacity(68),
532 };
533
534 miller_loop(&mut adder);
535
536 assert_eq!(adder.coeffs.len(), 68);
537
538 G2Prepared {
539 infinity: is_identity,
540 coeffs: adder.coeffs,
541 }
542 }
543}
544
545pub fn multi_miller_loop(terms: &[(&G1Affine, &G2Prepared)]) -> MillerLoopResult {
548 struct Adder<'a, 'b, 'c> {
549 terms: &'c [(&'a G1Affine, &'b G2Prepared)],
550 index: usize,
551 }
552
553 impl<'a, 'b, 'c> MillerLoopDriver for Adder<'a, 'b, 'c> {
554 type Output = Fp12;
555
556 fn doubling_step(&mut self, mut f: Self::Output) -> Self::Output {
557 let index = self.index;
558 for term in self.terms {
559 let either_identity = term.0.is_identity() | term.1.infinity;
560
561 let new_f = ell(f, &term.1.coeffs[index], term.0);
562 f = Fp12::conditional_select(&new_f, &f, either_identity);
563 }
564 self.index += 1;
565
566 f
567 }
568 fn addition_step(&mut self, mut f: Self::Output) -> Self::Output {
569 let index = self.index;
570 for term in self.terms {
571 let either_identity = term.0.is_identity() | term.1.infinity;
572
573 let new_f = ell(f, &term.1.coeffs[index], term.0);
574 f = Fp12::conditional_select(&new_f, &f, either_identity);
575 }
576 self.index += 1;
577
578 f
579 }
580 fn square_output(f: Self::Output) -> Self::Output {
581 f.square()
582 }
583 fn conjugate(f: Self::Output) -> Self::Output {
584 f.conjugate()
585 }
586 fn one() -> Self::Output {
587 Fp12::one()
588 }
589 }
590
591 let mut adder = Adder { terms, index: 0 };
592
593 let tmp = miller_loop(&mut adder);
594
595 MillerLoopResult(tmp)
596}
597
598#[cfg_attr(docsrs, doc(cfg(feature = "pairings")))]
600pub fn pairing(p: &G1Affine, q: &G2Affine) -> Gt {
601 struct Adder {
602 cur: G2Projective,
603 base: G2Affine,
604 p: G1Affine,
605 }
606
607 impl MillerLoopDriver for Adder {
608 type Output = Fp12;
609
610 fn doubling_step(&mut self, f: Self::Output) -> Self::Output {
611 let coeffs = doubling_step(&mut self.cur);
612 ell(f, &coeffs, &self.p)
613 }
614 fn addition_step(&mut self, f: Self::Output) -> Self::Output {
615 let coeffs = addition_step(&mut self.cur, &self.base);
616 ell(f, &coeffs, &self.p)
617 }
618 fn square_output(f: Self::Output) -> Self::Output {
619 f.square()
620 }
621 fn conjugate(f: Self::Output) -> Self::Output {
622 f.conjugate()
623 }
624 fn one() -> Self::Output {
625 Fp12::one()
626 }
627 }
628
629 let either_identity = p.is_identity() | q.is_identity();
630 let p = G1Affine::conditional_select(p, &G1Affine::generator(), either_identity);
631 let q = G2Affine::conditional_select(q, &G2Affine::generator(), either_identity);
632
633 let mut adder = Adder {
634 cur: G2Projective::from(q),
635 base: q,
636 p,
637 };
638
639 let tmp = miller_loop(&mut adder);
640 let tmp = MillerLoopResult(Fp12::conditional_select(
641 &tmp,
642 &Fp12::one(),
643 either_identity,
644 ));
645 tmp.final_exponentiation()
646}
647
648trait MillerLoopDriver {
649 type Output;
650
651 fn doubling_step(&mut self, f: Self::Output) -> Self::Output;
652 fn addition_step(&mut self, f: Self::Output) -> Self::Output;
653 fn square_output(f: Self::Output) -> Self::Output;
654 fn conjugate(f: Self::Output) -> Self::Output;
655 fn one() -> Self::Output;
656}
657
658fn miller_loop<D: MillerLoopDriver>(driver: &mut D) -> D::Output {
662 let mut f = D::one();
663
664 let mut found_one = false;
665 for i in (0..64).rev().map(|b| (((BLS_X >> 1) >> b) & 1) == 1) {
666 if !found_one {
667 found_one = i;
668 continue;
669 }
670
671 f = driver.doubling_step(f);
672
673 if i {
674 f = driver.addition_step(f);
675 }
676
677 f = D::square_output(f);
678 }
679
680 f = driver.doubling_step(f);
681
682 if BLS_X_IS_NEGATIVE {
683 f = D::conjugate(f);
684 }
685
686 f
687}
688
689fn ell(f: Fp12, coeffs: &(Fp2, Fp2, Fp2), p: &G1Affine) -> Fp12 {
690 let mut c0 = coeffs.0;
691 let mut c1 = coeffs.1;
692
693 c0.c0 *= p.y;
694 c0.c1 *= p.y;
695
696 c1.c0 *= p.x;
697 c1.c1 *= p.x;
698
699 f.mul_by_014(&coeffs.2, &c1, &c0)
700}
701
702fn doubling_step(r: &mut G2Projective) -> (Fp2, Fp2, Fp2) {
703 let tmp0 = r.x.square();
705 let tmp1 = r.y.square();
706 let tmp2 = tmp1.square();
707 let tmp3 = (tmp1 + r.x).square() - tmp0 - tmp2;
708 let tmp3 = tmp3 + tmp3;
709 let tmp4 = tmp0 + tmp0 + tmp0;
710 let tmp6 = r.x + tmp4;
711 let tmp5 = tmp4.square();
712 let zsquared = r.z.square();
713 r.x = tmp5 - tmp3 - tmp3;
714 r.z = (r.z + r.y).square() - tmp1 - zsquared;
715 r.y = (tmp3 - r.x) * tmp4;
716 let tmp2 = tmp2 + tmp2;
717 let tmp2 = tmp2 + tmp2;
718 let tmp2 = tmp2 + tmp2;
719 r.y -= tmp2;
720 let tmp3 = tmp4 * zsquared;
721 let tmp3 = tmp3 + tmp3;
722 let tmp3 = -tmp3;
723 let tmp6 = tmp6.square() - tmp0 - tmp5;
724 let tmp1 = tmp1 + tmp1;
725 let tmp1 = tmp1 + tmp1;
726 let tmp6 = tmp6 - tmp1;
727 let tmp0 = r.z * zsquared;
728 let tmp0 = tmp0 + tmp0;
729
730 (tmp0, tmp3, tmp6)
731}
732
733fn addition_step(r: &mut G2Projective, q: &G2Affine) -> (Fp2, Fp2, Fp2) {
734 let zsquared = r.z.square();
736 let ysquared = q.y.square();
737 let t0 = zsquared * q.x;
738 let t1 = ((q.y + r.z).square() - ysquared - zsquared) * zsquared;
739 let t2 = t0 - r.x;
740 let t3 = t2.square();
741 let t4 = t3 + t3;
742 let t4 = t4 + t4;
743 let t5 = t4 * t2;
744 let t6 = t1 - r.y - r.y;
745 let t9 = t6 * q.x;
746 let t7 = t4 * r.x;
747 r.x = t6.square() - t5 - t7 - t7;
748 r.z = (r.z + t2).square() - zsquared - t3;
749 let t10 = q.y + r.z;
750 let t8 = (t7 - r.x) * t6;
751 let t0 = r.y * t5;
752 let t0 = t0 + t0;
753 r.y = t8 - t0;
754 let t10 = t10.square() - ysquared;
755 let ztsquared = r.z.square();
756 let t10 = t10 - ztsquared;
757 let t9 = t9 + t9 - t10;
758 let t10 = r.z + r.z;
759 let t6 = -t6;
760 let t1 = t6 + t6;
761
762 (t10, t1, t9)
763}
764
765impl PairingCurveAffine for G1Affine {
766 type Pair = G2Affine;
767 type PairingResult = Gt;
768
769 fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
770 pairing(self, other)
771 }
772}
773
774impl PairingCurveAffine for G2Affine {
775 type Pair = G1Affine;
776 type PairingResult = Gt;
777
778 fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
779 pairing(other, self)
780 }
781}
782
783#[cfg_attr(docsrs, doc(cfg(feature = "pairings")))]
785#[derive(Clone, Debug)]
786pub struct Bls12;
787
788impl Engine for Bls12 {
789 type Fr = Scalar;
790 type G1 = G1Projective;
791 type G1Affine = G1Affine;
792 type G2 = G2Projective;
793 type G2Affine = G2Affine;
794 type Gt = Gt;
795
796 fn pairing(p: &Self::G1Affine, q: &Self::G2Affine) -> Self::Gt {
797 pairing(p, q)
798 }
799}
800
801impl pairing::MillerLoopResult for MillerLoopResult {
802 type Gt = Gt;
803
804 fn final_exponentiation(&self) -> Self::Gt {
805 self.final_exponentiation()
806 }
807}
808
809impl MultiMillerLoop for Bls12 {
810 type G2Prepared = G2Prepared;
811 type Result = MillerLoopResult;
812
813 fn multi_miller_loop(terms: &[(&Self::G1Affine, &Self::G2Prepared)]) -> Self::Result {
814 multi_miller_loop(terms)
815 }
816}
817
818#[test]
819fn test_gt_generator() {
820 assert_eq!(
821 Gt::generator(),
822 pairing(&G1Affine::generator(), &G2Affine::generator())
823 );
824}
825
826#[test]
827fn test_bilinearity() {
828 use super::Scalar;
829
830 let a = Scalar::from_raw([1, 2, 3, 4]).invert().unwrap().square();
831 let b = Scalar::from_raw([5, 6, 7, 8]).invert().unwrap().square();
832 let c = a * b;
833
834 let g = G1Affine::from(G1Affine::generator() * a);
835 let h = G2Affine::from(G2Affine::generator() * b);
836 let p = pairing(&g, &h);
837
838 assert!(p != Gt::identity());
839
840 let expected = G1Affine::from(G1Affine::generator() * c);
841
842 assert_eq!(p, pairing(&expected, &G2Affine::generator()));
843 assert_eq!(
844 p,
845 pairing(&G1Affine::generator(), &G2Affine::generator()) * c
846 );
847}
848
849#[test]
850fn test_unitary() {
851 let g = G1Affine::generator();
852 let h = G2Affine::generator();
853 let p = -pairing(&g, &h);
854 let q = pairing(&g, &-h);
855 let r = pairing(&-g, &h);
856
857 assert_eq!(p, q);
858 assert_eq!(q, r);
859}
860
861#[test]
862fn test_multi_miller_loop() {
863 let a1 = G1Affine::generator();
864 let b1 = G2Affine::generator();
865
866 let a2 = G1Affine::from(
867 G1Affine::generator() * Scalar::from_raw([1, 2, 3, 4]).invert().unwrap().square(),
868 );
869 let b2 = G2Affine::from(
870 G2Affine::generator() * Scalar::from_raw([4, 2, 2, 4]).invert().unwrap().square(),
871 );
872
873 let a3 = G1Affine::identity();
874 let b3 = G2Affine::from(
875 G2Affine::generator() * Scalar::from_raw([9, 2, 2, 4]).invert().unwrap().square(),
876 );
877
878 let a4 = G1Affine::from(
879 G1Affine::generator() * Scalar::from_raw([5, 5, 5, 5]).invert().unwrap().square(),
880 );
881 let b4 = G2Affine::identity();
882
883 let a5 = G1Affine::from(
884 G1Affine::generator() * Scalar::from_raw([323, 32, 3, 1]).invert().unwrap().square(),
885 );
886 let b5 = G2Affine::from(
887 G2Affine::generator() * Scalar::from_raw([4, 2, 2, 9099]).invert().unwrap().square(),
888 );
889
890 let b1_prepared = G2Prepared::from(b1);
891 let b2_prepared = G2Prepared::from(b2);
892 let b3_prepared = G2Prepared::from(b3);
893 let b4_prepared = G2Prepared::from(b4);
894 let b5_prepared = G2Prepared::from(b5);
895
896 let expected = pairing(&a1, &b1)
897 + pairing(&a2, &b2)
898 + pairing(&a3, &b3)
899 + pairing(&a4, &b4)
900 + pairing(&a5, &b5);
901
902 let test = multi_miller_loop(&[
903 (&a1, &b1_prepared),
904 (&a2, &b2_prepared),
905 (&a3, &b3_prepared),
906 (&a4, &b4_prepared),
907 (&a5, &b5_prepared),
908 ])
909 .final_exponentiation();
910
911 assert_eq!(expected, test);
912}
913
914#[test]
915fn test_miller_loop_result_default() {
916 assert_eq!(
917 MillerLoopResult::default().final_exponentiation(),
918 Gt::identity(),
919 );
920}
921
922#[cfg(feature = "zeroize")]
923#[test]
924fn test_miller_loop_result_zeroize() {
925 use zeroize::Zeroize;
926
927 let mut m = multi_miller_loop(&[
928 (&G1Affine::generator(), &G2Affine::generator().into()),
929 (&-G1Affine::generator(), &G2Affine::generator().into()),
930 ]);
931 m.zeroize();
932 assert_eq!(m.0, MillerLoopResult::default().0);
933}
934
935