halo2curves_axiom/secp256k1/
fp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
use crate::arithmetic::{adc, mac, macx, sbb};
use crate::extend_field_legendre;
use crate::ff::{FromUniformBytes, PrimeField, WithSmallOrderMulGroup};
use crate::{
    field_arithmetic, field_bits, field_common, field_specific, impl_add_binop_specify_output,
    impl_binops_additive, impl_binops_additive_specify_output, impl_binops_multiplicative,
    impl_binops_multiplicative_mixed, impl_from_u64, impl_sub_binop_specify_output, impl_sum_prod,
};
use core::convert::TryInto;
use core::fmt;
use core::ops::{Add, Mul, Neg, Sub};
use rand::RngCore;
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};

/// This represents an element of $\mathbb{F}_p$ where
///
/// `p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f`
///
/// is the base field of the secp256k1 curve.
// The internal representation of this type is four 64-bit unsigned
// integers in little-endian order. `Fp` values are always in
// Montgomery form; i.e., Fp(a) = aR mod p, with R = 2^256.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct Fp(pub(crate) [u64; 4]);

#[cfg(feature = "derive_serde")]
crate::serialize_deserialize_32_byte_primefield!(Fp);

/// Constant representing the modulus
/// p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
const MODULUS: Fp = Fp([
    0xfffffffefffffc2f,
    0xffffffffffffffff,
    0xffffffffffffffff,
    0xffffffffffffffff,
]);

/// Constant representing the multiplicative generator of the modulus.
/// It's derived with SageMath with: `GF(MODULUS).primitive_element()`.
const MULTIPLICATIVE_GENERATOR: Fp = Fp::from_raw([0x03, 0x00, 0x00, 0x00]);

/// The modulus as u32 limbs.
#[cfg(not(target_pointer_width = "64"))]
const MODULUS_LIMBS_32: [u32; 8] = [
    0xffff_fc2f,
    0xffff_fffe,
    0xffff_ffff,
    0xffff_ffff,
    0xffff_ffff,
    0xffff_ffff,
    0xffff_ffff,
    0xffff_ffff,
];

/// Constant representing the modolus as static str
const MODULUS_STR: &str = "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f";

/// INV = -(p^{-1} mod 2^64) mod 2^64
const INV: u64 = 0xd838091dd2253531;

/// R = 2^256 mod p
/// 0x1000003d1
const R: Fp = Fp([0x1000003d1, 0, 0, 0]);

/// R^2 = 2^512 mod p
/// 0x1000007a2000e90a1
const R2: Fp = Fp([0x000007a2000e90a1, 0x1, 0, 0]);

/// R^3 = 2^768 mod p
/// 0x100000b73002bb1e33795f671
const R3: Fp = Fp([0x002bb1e33795f671, 0x100000b73, 0, 0]);

/// 1 / 2 mod p
const TWO_INV: Fp = Fp::from_raw([
    0xffffffff7ffffe18,
    0xffffffffffffffff,
    0xffffffffffffffff,
    0x7fffffffffffffff,
]);

const ZETA: Fp = Fp::from_raw([
    0xc1396c28719501ee,
    0x9cf0497512f58995,
    0x6e64479eac3434e9,
    0x7ae96a2b657c0710,
]);

/// Generator of the t-order multiplicative subgroup.
/// Computed by exponentiating Self::MULTIPLICATIVE_GENERATOR by 2^s, where s is Self::S.
/// `0x0000000000000000000000000000000000000000000000000000000000000009`.
const DELTA: Fp = Fp([0x900002259u64, 0, 0, 0]);

/// Implementations of this trait MUST ensure that this is the generator used to derive Self::ROOT_OF_UNITY.
/// Derived from:
/// ```ignore
/// Zp(Zp(mul_generator)^t) where t = (modulus - 1 )/ 2
/// 115792089237316195423570985008687907853269984665640564039457584007908834671662
/// ```
const ROOT_OF_UNITY: Fp = Fp([
    0xfffffffdfffff85eu64,
    0xffffffffffffffffu64,
    0xffffffffffffffffu64,
    0xffffffffffffffffu64,
]);

/// Inverse of [`ROOT_OF_UNITY`].
const ROOT_OF_UNITY_INV: Fp = Fp([
    0xfffffffdfffff85eu64,
    0xffffffffffffffffu64,
    0xffffffffffffffffu64,
    0xffffffffffffffffu64,
]);

impl_binops_additive!(Fp, Fp);
impl_binops_multiplicative!(Fp, Fp);
field_common!(
    Fp,
    MODULUS,
    INV,
    MODULUS_STR,
    TWO_INV,
    ROOT_OF_UNITY_INV,
    DELTA,
    ZETA,
    R,
    R2,
    R3
);
impl_from_u64!(Fp, R2);
field_arithmetic!(Fp, MODULUS, INV, dense);
impl_sum_prod!(Fp);

#[cfg(target_pointer_width = "64")]
field_bits!(Fp, MODULUS);
#[cfg(not(target_pointer_width = "64"))]
field_bits!(Fp, MODULUS, MODULUS_LIMBS_32);

impl Fp {
    pub const fn size() -> usize {
        32
    }
}

impl ff::Field for Fp {
    const ZERO: Self = Self::zero();
    const ONE: Self = Self::one();

    fn random(mut rng: impl RngCore) -> Self {
        Self::from_u512([
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
        ])
    }

    fn double(&self) -> Self {
        self.double()
    }

    #[inline(always)]
    fn square(&self) -> Self {
        self.square()
    }

    /// Computes the square root of this element, if it exists.
    fn sqrt(&self) -> CtOption<Self> {
        let tmp = self.pow([
            0xffffffffbfffff0c,
            0xffffffffffffffff,
            0xffffffffffffffff,
            0x3fffffffffffffff,
        ]);

        CtOption::new(tmp, tmp.square().ct_eq(self))
    }

    /// Returns the multiplicative inverse of the
    /// element. If it is zero, the method fails.
    fn invert(&self) -> CtOption<Self> {
        self.invert()
    }

    fn pow_vartime<S: AsRef<[u64]>>(&self, exp: S) -> Self {
        let mut res = Self::one();
        let mut found_one = false;
        for e in exp.as_ref().iter().rev() {
            for i in (0..64).rev() {
                if found_one {
                    res = res.square();
                }

                if ((*e >> i) & 1) == 1 {
                    found_one = true;
                    res *= self;
                }
            }
        }
        res
    }

    fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self) {
        ff::helpers::sqrt_ratio_generic(num, div)
    }
}

impl ff::PrimeField for Fp {
    type Repr = [u8; 32];

    const MODULUS: &'static str = MODULUS_STR;
    const MULTIPLICATIVE_GENERATOR: Self = MULTIPLICATIVE_GENERATOR;
    const TWO_INV: Self = TWO_INV;
    const ROOT_OF_UNITY: Self = ROOT_OF_UNITY;
    const ROOT_OF_UNITY_INV: Self = ROOT_OF_UNITY_INV;
    const DELTA: Self = DELTA;
    const NUM_BITS: u32 = 256;
    const CAPACITY: u32 = 255;
    const S: u32 = 1;

    fn from_repr(repr: Self::Repr) -> CtOption<Self> {
        let mut tmp = Fp([0, 0, 0, 0]);

        tmp.0[0] = u64::from_le_bytes(repr[0..8].try_into().unwrap());
        tmp.0[1] = u64::from_le_bytes(repr[8..16].try_into().unwrap());
        tmp.0[2] = u64::from_le_bytes(repr[16..24].try_into().unwrap());
        tmp.0[3] = u64::from_le_bytes(repr[24..32].try_into().unwrap());

        // Try to subtract the modulus
        let (_, borrow) = sbb(tmp.0[0], MODULUS.0[0], 0);
        let (_, borrow) = sbb(tmp.0[1], MODULUS.0[1], borrow);
        let (_, borrow) = sbb(tmp.0[2], MODULUS.0[2], borrow);
        let (_, borrow) = sbb(tmp.0[3], MODULUS.0[3], borrow);

        // If the element is smaller than MODULUS then the
        // subtraction will underflow, producing a borrow value
        // of 0xffff...ffff. Otherwise, it'll be zero.
        let is_some = (borrow as u8) & 1;

        // Convert to Montgomery form by computing
        // (a.R^0 * R^2) / R = a.R
        tmp *= &R2;

        CtOption::new(tmp, Choice::from(is_some))
    }

    fn to_repr(&self) -> Self::Repr {
        let tmp: [u64; 4] = (*self).into();
        let mut res = [0; 32];
        res[0..8].copy_from_slice(&tmp[0].to_le_bytes());
        res[8..16].copy_from_slice(&tmp[1].to_le_bytes());
        res[16..24].copy_from_slice(&tmp[2].to_le_bytes());
        res[24..32].copy_from_slice(&tmp[3].to_le_bytes());

        res
    }

    fn from_u128(v: u128) -> Self {
        Self::from_raw([v as u64, (v >> 64) as u64, 0, 0])
    }

    fn is_odd(&self) -> Choice {
        Choice::from(self.to_repr()[0] & 1)
    }
}

impl FromUniformBytes<64> for Fp {
    /// Converts a 512-bit little endian integer into
    /// an `Fp` by reducing by the modulus.
    fn from_uniform_bytes(bytes: &[u8; 64]) -> Self {
        Self::from_u512([
            u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
            u64::from_le_bytes(bytes[8..16].try_into().unwrap()),
            u64::from_le_bytes(bytes[16..24].try_into().unwrap()),
            u64::from_le_bytes(bytes[24..32].try_into().unwrap()),
            u64::from_le_bytes(bytes[32..40].try_into().unwrap()),
            u64::from_le_bytes(bytes[40..48].try_into().unwrap()),
            u64::from_le_bytes(bytes[48..56].try_into().unwrap()),
            u64::from_le_bytes(bytes[56..64].try_into().unwrap()),
        ])
    }
}

impl WithSmallOrderMulGroup<3> for Fp {
    const ZETA: Self = ZETA;
}

extend_field_legendre!(Fp);

#[cfg(test)]
mod test {
    use super::*;
    use ff::Field;
    use rand_core::OsRng;

    #[test]
    fn test_sqrt() {
        // NB: TWO_INV is standing in as a "random" field element
        let v = (Fp::TWO_INV).square().sqrt().unwrap();
        assert!(v == Fp::TWO_INV || (-v) == Fp::TWO_INV);

        for _ in 0..10000 {
            let a = Fp::random(OsRng);
            let mut b = a;
            b = b.square();

            let b = b.sqrt().unwrap();
            let mut negb = b;
            negb = negb.neg();

            assert!(a == b || a == negb);
        }
    }

    #[test]
    fn test_constants() {
        assert_eq!(
            Fp::MODULUS,
            "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f",
        );

        assert_eq!(Fp::from(2) * Fp::TWO_INV, Fp::ONE);
    }

    #[test]
    fn test_delta() {
        assert_eq!(Fp::DELTA, MULTIPLICATIVE_GENERATOR.pow([1u64 << Fp::S]));
    }

    #[test]
    fn test_root_of_unity() {
        assert_eq!(Fp::ROOT_OF_UNITY.pow_vartime([1 << Fp::S]), Fp::one());
    }

    #[test]
    fn test_inv_root_of_unity() {
        assert_eq!(Fp::ROOT_OF_UNITY_INV, Fp::ROOT_OF_UNITY.invert().unwrap());
    }

    #[test]
    fn test_field() {
        crate::tests::field::random_field_tests::<Fp>("secp256k1 base".to_string());
    }

    #[test]
    fn test_conversion() {
        crate::tests::field::random_conversion_tests::<Fp>("secp256k1 base".to_string());
    }

    #[test]
    #[cfg(feature = "bits")]
    fn test_bits() {
        crate::tests::field::random_bits_tests::<Fp>("secp256k1 base".to_string());
    }

    #[test]
    fn test_serialization() {
        crate::tests::field::random_serialization_test::<Fp>("secp256k1 base".to_string());
        #[cfg(feature = "derive_serde")]
        crate::tests::field::random_serde_test::<Fp>("secp256k1 base".to_string());
    }

    #[test]
    fn test_quadratic_residue() {
        crate::tests::field::random_quadratic_residue_test::<Fp>();
    }
}