ruint/algorithms/gcd/matrix.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
#![allow(clippy::use_self)]
use crate::Uint;
/// ⚠️ Lehmer update matrix
///
/// **Warning.** This struct is not part of the stable API.
///
/// Signs are implicit, the boolean `.4` encodes which of two sign
/// patterns applies. The signs and layout of the matrix are:
///
/// ```text
/// true false
/// [ .0 -.1] [-.0 .1]
/// [-.2 .3] [ .2 -.3]
/// ```
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Matrix(pub u64, pub u64, pub u64, pub u64, pub bool);
impl Matrix {
pub const IDENTITY: Self = Self(1, 0, 0, 1, true);
/// Returns the matrix product `self * other`.
#[inline]
#[allow(clippy::suspicious_operation_groupings)]
#[must_use]
pub const fn compose(self, other: Self) -> Self {
Self(
self.0 * other.0 + self.1 * other.2,
self.0 * other.1 + self.1 * other.3,
self.2 * other.0 + self.3 * other.2,
self.2 * other.1 + self.3 * other.3,
self.4 ^ !other.4,
)
}
/// Applies the matrix to a `Uint`.
#[inline]
pub fn apply<const BITS: usize, const LIMBS: usize>(
&self,
a: &mut Uint<BITS, LIMBS>,
b: &mut Uint<BITS, LIMBS>,
) {
if BITS == 0 {
return;
}
// OPT: We can avoid the temporary if we implement a dedicated matrix
// multiplication.
let (c, d) = if self.4 {
(
Uint::from(self.0) * *a - Uint::from(self.1) * *b,
Uint::from(self.3) * *b - Uint::from(self.2) * *a,
)
} else {
(
Uint::from(self.1) * *b - Uint::from(self.0) * *a,
Uint::from(self.2) * *a - Uint::from(self.3) * *b,
)
};
*a = c;
*b = d;
}
/// Applies the matrix to a `u128`.
#[inline]
#[must_use]
pub const fn apply_u128(&self, a: u128, b: u128) -> (u128, u128) {
// Intermediate values can overflow but the final result will fit, so we
// compute mod 2^128.
if self.4 {
(
(self.0 as u128)
.wrapping_mul(a)
.wrapping_sub((self.1 as u128).wrapping_mul(b)),
(self.3 as u128)
.wrapping_mul(b)
.wrapping_sub((self.2 as u128).wrapping_mul(a)),
)
} else {
(
(self.1 as u128)
.wrapping_mul(b)
.wrapping_sub((self.0 as u128).wrapping_mul(a)),
(self.2 as u128)
.wrapping_mul(a)
.wrapping_sub((self.3 as u128).wrapping_mul(b)),
)
}
}
/// Compute a Lehmer update matrix from two `Uint`s.
///
/// # Panics
///
/// Panics if `b > a`.
#[inline]
#[must_use]
pub fn from<const BITS: usize, const LIMBS: usize>(
a: Uint<BITS, LIMBS>,
b: Uint<BITS, LIMBS>,
) -> Self {
assert!(a >= b);
// Grab the first 128 bits.
let s = a.bit_len();
if s <= 64 {
Self::from_u64(a.try_into().unwrap(), b.try_into().unwrap())
} else if s <= 128 {
Self::from_u128_prefix(a.try_into().unwrap(), b.try_into().unwrap())
} else {
let a = a >> (s - 128);
let b = b >> (s - 128);
Self::from_u128_prefix(a.try_into().unwrap(), b.try_into().unwrap())
}
}
/// Compute the Lehmer update matrix for small values.
///
/// This is essentially Euclids extended GCD algorithm for 64 bits.
///
/// # Panics
///
/// Panics if `r0 < r1`.
// OPT: Would this be faster using extended binary gcd?
// See <https://en.algorithmica.org/hpc/algorithms/gcd>
#[inline]
#[must_use]
pub fn from_u64(mut r0: u64, mut r1: u64) -> Self {
debug_assert!(r0 >= r1);
if r1 == 0_u64 {
return Matrix::IDENTITY;
}
let mut q00 = 1_u64;
let mut q01 = 0_u64;
let mut q10 = 0_u64;
let mut q11 = 1_u64;
loop {
// Loop is unrolled once to avoid swapping variables and tracking parity.
let q = r0 / r1;
r0 -= q * r1;
q00 += q * q10;
q01 += q * q11;
if r0 == 0_u64 {
return Matrix(q10, q11, q00, q01, false);
}
let q = r1 / r0;
r1 -= q * r0;
q10 += q * q00;
q11 += q * q01;
if r1 == 0_u64 {
return Matrix(q00, q01, q10, q11, true);
}
}
}
/// Compute the largest valid Lehmer update matrix for a prefix.
///
/// Compute the Lehmer update matrix for a0 and a1 such that the matrix is
/// valid for any two large integers starting with the bits of a0 and
/// a1.
///
/// See also `mpn_hgcd2` in GMP, but ours handles the double precision bit
/// separately in `lehmer_double`.
/// <https://gmplib.org/repo/gmp-6.1/file/tip/mpn/generic/hgcd2.c#l226>
///
/// # Panics
///
/// Panics if `a0` does not have the highest bit set.
/// Panics if `a0 < a1`.
#[inline]
#[must_use]
#[allow(clippy::redundant_else)]
#[allow(clippy::cognitive_complexity)] // REFACTOR: Improve
pub fn from_u64_prefix(a0: u64, mut a1: u64) -> Self {
const LIMIT: u64 = 1_u64 << 32;
debug_assert!(a0 >= 1_u64 << 63);
debug_assert!(a0 >= a1);
// Here we do something original: The cofactors undergo identical
// operations which makes them a candidate for SIMD instructions.
// They also never exceed 32 bit, so we can SWAR them in a single u64.
let mut k0 = 1_u64 << 32; // u0 = 1, v0 = 0
let mut k1 = 1_u64; // u1 = 0, v1 = 1
let mut even = true;
if a1 < LIMIT {
return Matrix::IDENTITY;
}
// Compute a2
let q = a0 / a1;
// dbg!(q);
let mut a2 = a0 - q * a1;
let mut k2 = k0 + q * k1;
if a2 < LIMIT {
let u2 = k2 >> 32;
let v2 = k2 % LIMIT;
// Test i + 1 (odd)
if a2 >= v2 && a1 - a2 >= u2 {
return Matrix(0, 1, u2, v2, false);
} else {
return Matrix::IDENTITY;
}
}
// Compute a3
let q = a1 / a2;
// dbg!(q);
let mut a3 = a1 - q * a2;
let mut k3 = k1 + q * k2;
// Loop until a3 < LIMIT, maintaining the last three values
// of a and the last four values of k.
while a3 >= LIMIT {
a1 = a2;
a2 = a3;
a3 = a1;
k0 = k1;
k1 = k2;
k2 = k3;
k3 = k1;
debug_assert!(a2 < a3);
debug_assert!(a2 > 0);
let q = a3 / a2;
// dbg!(q);
a3 -= q * a2;
k3 += q * k2;
if a3 < LIMIT {
even = false;
break;
}
a1 = a2;
a2 = a3;
a3 = a1;
k0 = k1;
k1 = k2;
k2 = k3;
k3 = k1;
debug_assert!(a2 < a3);
debug_assert!(a2 > 0);
let q = a3 / a2;
// dbg!(q);
a3 -= q * a2;
k3 += q * k2;
}
// Unpack k into cofactors u and v
let u0 = k0 >> 32;
let u1 = k1 >> 32;
let u2 = k2 >> 32;
let u3 = k3 >> 32;
let v0 = k0 % LIMIT;
let v1 = k1 % LIMIT;
let v2 = k2 % LIMIT;
let v3 = k3 % LIMIT;
debug_assert!(a2 >= LIMIT);
debug_assert!(a3 < LIMIT);
// Use Jebelean's exact condition to determine which outputs are correct.
// Statistically, i + 2 should be correct about two-thirds of the time.
if even {
// Test i + 1 (odd)
debug_assert!(a2 >= v2);
if a1 - a2 >= u2 + u1 {
// Test i + 2 (even)
if a3 >= u3 && a2 - a3 >= v3 + v2 {
// Correct value is i + 2
Matrix(u2, v2, u3, v3, true)
} else {
// Correct value is i + 1
Matrix(u1, v1, u2, v2, false)
}
} else {
// Correct value is i
Matrix(u0, v0, u1, v1, true)
}
} else {
// Test i + 1 (even)
debug_assert!(a2 >= u2);
if a1 - a2 >= v2 + v1 {
// Test i + 2 (odd)
if a3 >= v3 && a2 - a3 >= u3 + u2 {
// Correct value is i + 2
Matrix(u2, v2, u3, v3, false)
} else {
// Correct value is i + 1
Matrix(u1, v1, u2, v2, true)
}
} else {
// Correct value is i
Matrix(u0, v0, u1, v1, false)
}
}
}
/// Compute the Lehmer update matrix in full 64 bit precision.
///
/// Jebelean solves this by starting in double-precission followed
/// by single precision once values are small enough.
/// Cohen instead runs a single precision round, refreshes the r0 and r1
/// values and continues with another single precision round on top.
/// Our approach is similar to Cohen, but instead doing the second round
/// on the same matrix, we start we a fresh matrix and multiply both in the
/// end. This requires 8 additional multiplications, but allows us to use
/// the tighter stopping conditions from Jebelean. It also seems the
/// simplest out of these solutions.
// OPT: We can update r0 and r1 in place. This won't remove the partially
// redundant call to lehmer_update, but it reduces memory usage.
#[inline]
#[must_use]
pub fn from_u128_prefix(r0: u128, r1: u128) -> Self {
debug_assert!(r0 >= r1);
let s = r0.leading_zeros();
let r0s = r0 << s;
let r1s = r1 << s;
let q = Self::from_u64_prefix((r0s >> 64) as u64, (r1s >> 64) as u64);
if q == Matrix::IDENTITY {
return q;
}
// We can return q here and have a perfectly valid single-word Lehmer GCD.
q
// OPT: Fix the below method to get double-word Lehmer GCD.
// Recompute r0 and r1 and take the high bits.
// TODO: Is it safe to do this based on just the u128 prefix?
// let (r0, r1) = q.apply_u128(r0, r1);
// let s = r0.leading_zeros();
// let r0s = r0 << s;
// let r1s = r1 << s;
// let qn = Self::from_u64_prefix((r0s >> 64) as u64, (r1s >> 64) as
// u64);
// // Multiply matrices qn * q
// qn.compose(q)
}
}
#[cfg(test)]
#[allow(clippy::cast_lossless)]
#[allow(clippy::many_single_char_names)]
mod tests {
use super::*;
use crate::{const_for, nlimbs};
use core::{
cmp::{max, min},
mem::swap,
str::FromStr,
};
use proptest::{proptest, test_runner::Config};
fn gcd(mut a: u128, mut b: u128) -> u128 {
while b != 0 {
a %= b;
swap(&mut a, &mut b);
}
a
}
fn gcd_uint<const BITS: usize, const LIMBS: usize>(
mut a: Uint<BITS, LIMBS>,
mut b: Uint<BITS, LIMBS>,
) -> Uint<BITS, LIMBS> {
while b != Uint::ZERO {
a %= b;
swap(&mut a, &mut b);
}
a
}
#[test]
fn test_from_u64_example() {
let (a, b) = (252, 105);
let m = Matrix::from_u64(a, b);
assert_eq!(m, Matrix(2, 5, 5, 12, false));
let (a, b) = m.apply_u128(a as u128, b as u128);
assert_eq!(a, 21);
assert_eq!(b, 0);
}
#[test]
fn test_from_u64() {
proptest!(|(a: u64, b: u64)| {
let (a, b) = (max(a,b), min(a,b));
let m = Matrix::from_u64(a, b);
let (c, d) = m.apply_u128(a as u128, b as u128);
assert!(c >= d);
assert_eq!(c, gcd(a as u128, b as u128));
assert_eq!(d, 0);
});
}
#[test]
fn test_from_u64_prefix() {
proptest!(|(a: u128, b: u128)| {
// Prepare input
let (a, b) = (max(a,b), min(a,b));
let s = a.leading_zeros();
let (sa, sb) = (a << s, b << s);
let m = Matrix::from_u64_prefix((sa >> 64) as u64, (sb >> 64) as u64);
let (c, d) = m.apply_u128(a, b);
assert!(c >= d);
if m == Matrix::IDENTITY {
assert_eq!(c, a);
assert_eq!(d, b);
} else {
assert!(c <= a);
assert!(d < b);
assert_eq!(gcd(a, b), gcd(c, d));
}
});
}
fn test_form_uint_one<const BITS: usize, const LIMBS: usize>(
a: Uint<BITS, LIMBS>,
b: Uint<BITS, LIMBS>,
) {
let (a, b) = (max(a, b), min(a, b));
let m = Matrix::from(a, b);
let (mut c, mut d) = (a, b);
m.apply(&mut c, &mut d);
assert!(c >= d);
if m == Matrix::IDENTITY {
assert_eq!(c, a);
assert_eq!(d, b);
} else {
assert!(c <= a);
assert!(d < b);
assert_eq!(gcd_uint(a, b), gcd_uint(c, d));
}
}
#[test]
fn test_from_uint_cases() {
// This case fails with the double-word version above.
type U129 = Uint<129, 3>;
test_form_uint_one(
U129::from_str("0x01de6ef6f3caa963a548d7a411b05b9988").unwrap(),
U129::from_str("0x006d7c4641f88b729a97889164dd8d07db").unwrap(),
);
}
#[test]
#[allow(clippy::absurd_extreme_comparisons)] // Generated code
fn test_from_uint_proptest() {
const_for!(BITS in SIZES {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
let config = Config { cases: 10, ..Default::default() };
proptest!(config, |(a: U, b: U)| {
test_form_uint_one(a, b);
});
});
}
}