openvm_pairing_guest/halo2curves_shims/bls12_381/
miller_loop.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use alloc::vec::Vec;

use halo2curves_axiom::bls12_381::{Fq, Fq12, Fq2};
use itertools::izip;
use openvm_ecc_guest::{
    algebra::{DivUnsafe, Field},
    AffinePoint,
};

use super::Bls12_381;
use crate::{
    bls12_381::{BLS12_381_PSEUDO_BINARY_ENCODING, BLS12_381_SEED_ABS},
    pairing::{
        Evaluatable, EvaluatedLine, LineMulMType, MillerStep, MultiMillerLoop, UnevaluatedLine,
    },
};

impl MillerStep for Bls12_381 {
    type Fp2 = Fq2;

    /// Miller double step
    fn miller_double_step(
        s: &AffinePoint<Self::Fp2>,
    ) -> (AffinePoint<Self::Fp2>, UnevaluatedLine<Self::Fp2>) {
        let one = &Self::Fp2::ONE;
        let two = &(one + one);
        let three = &(one + two);

        let x = &s.x;
        let y = &s.y;
        // λ = (3x^2) / (2y)
        let lambda = &((three * x * x).div_unsafe(&(two * y)));
        // x_2s = λ^2 - 2x
        let x_2s = lambda * lambda - two * x;
        // y_2s = λ(x - x_2s) - y
        let y_2s = lambda * (x - x_2s) - y;
        let two_s = AffinePoint { x: x_2s, y: y_2s };

        // Tangent line
        //   1 + b' (x_P / y_P) w^-1 + c' (1 / y_P) w^-3
        // where
        //   l_{\Psi(S),\Psi(S)}(P) = (λ * x_S - y_S) (1 / y_P)  - λ (x_P / y_P) w^2 + w^3
        // x0 = λ * x_S - y_S
        // x2 = - λ
        let b = lambda.neg();
        let c = lambda * x - y;

        (two_s, UnevaluatedLine { b, c })
    }

    fn miller_add_step(
        s: &AffinePoint<Self::Fp2>,
        q: &AffinePoint<Self::Fp2>,
    ) -> (AffinePoint<Self::Fp2>, UnevaluatedLine<Self::Fp2>) {
        let x_s = &s.x;
        let y_s = &s.y;
        let x_q = &q.x;
        let y_q = &q.y;

        // λ1 = (y_s - y_q) / (x_s - x_q)
        let x_delta = x_s - x_q;
        let lambda = (y_s - y_q).div_unsafe(&x_delta);
        let x_s_plus_q = lambda * lambda - x_s - x_q;
        let y_s_plus_q = lambda * (x_q - x_s_plus_q) - y_q;

        let s_plus_q = AffinePoint {
            x: x_s_plus_q,
            y: y_s_plus_q,
        };

        // l_{\Psi(S),\Psi(Q)}(P) = (λ_1 * x_S - y_S) (1 / y_P) - λ_1 (x_P / y_P) w^2 + w^3
        let b = lambda.neg();
        let c = lambda * x_s - y_s;

        (s_plus_q, UnevaluatedLine { b, c })
    }

    /// Miller double and add step (2S + Q implemented as S + Q + S for efficiency)
    #[allow(clippy::type_complexity)]
    fn miller_double_and_add_step(
        s: &AffinePoint<Self::Fp2>,
        q: &AffinePoint<Self::Fp2>,
    ) -> (
        AffinePoint<Self::Fp2>,
        UnevaluatedLine<Self::Fp2>,
        UnevaluatedLine<Self::Fp2>,
    ) {
        let one = &Self::Fp2::ONE;
        let two = &(one + one);

        let x_s = &s.x;
        let y_s = &s.y;
        let x_q = &q.x;
        let y_q = &q.y;

        // λ1 = (y_s - y_q) / (x_s - x_q)
        let lambda1 = &((y_s - y_q).div_unsafe(&(x_s - x_q)));
        let x_s_plus_q = lambda1 * lambda1 - x_s - x_q;

        // λ2 = -λ1 - 2y_s / (x_{s+q} - x_s)
        let lambda2 = &(lambda1.neg() - (two * y_s).div_unsafe(&(x_s_plus_q - x_s)));
        let x_s_plus_q_plus_s = lambda2 * lambda2 - x_s - x_s_plus_q;
        let y_s_plus_q_plus_s = lambda2 * (x_s - x_s_plus_q_plus_s) - y_s;

        let s_plus_q_plus_s = AffinePoint {
            x: x_s_plus_q_plus_s,
            y: y_s_plus_q_plus_s,
        };

        // l_{\Psi(S),\Psi(Q)}(P) = (λ_1 * x_S - y_S) (1 / y_P) - λ_1 (x_P / y_P) w^2 + w^3
        let b0 = lambda1.neg();
        let c0 = lambda1 * x_s - y_s;

        // l_{\Psi(S+Q),\Psi(S)}(P) = (λ_2 * x_S - y_S) (1 / y_P) - λ_2 (x_P / y_P) w^2 + w^3
        let b1 = lambda2.neg();
        let c1 = lambda2 * x_s - y_s;

        (
            s_plus_q_plus_s,
            UnevaluatedLine { b: b0, c: c0 },
            UnevaluatedLine { b: b1, c: c1 },
        )
    }
}

#[allow(non_snake_case)]
impl MultiMillerLoop for Bls12_381 {
    type Fp = Fq;
    type Fp12 = Fq12;

    const SEED_ABS: u64 = BLS12_381_SEED_ABS;
    const PSEUDO_BINARY_ENCODING: &[i8] = &BLS12_381_PSEUDO_BINARY_ENCODING;

    fn evaluate_lines_vec(f: Fq12, lines: Vec<EvaluatedLine<Fq2>>) -> Fq12 {
        let mut f = f;
        let mut lines = lines;
        if lines.len() % 2 == 1 {
            f = Self::mul_by_023(&f, &lines.pop().unwrap());
        }
        for chunk in lines.chunks(2) {
            if let [line0, line1] = chunk {
                let prod = Self::mul_023_by_023(line0, line1);
                f = Self::mul_by_02345(&f, &prod);
            } else {
                panic!("lines.len() % 2 should be 0 at this point");
            }
        }
        f
    }

    /// The expected output of this function when running the Miller loop with embedded exponent is c^3 * l_{3Q}
    fn pre_loop(
        Q_acc: Vec<AffinePoint<Fq2>>,
        Q: &[AffinePoint<Fq2>],
        c: Option<Fq12>,
        xy_fracs: &[(Fq, Fq)],
    ) -> (Fq12, Vec<AffinePoint<Fq2>>) {
        let mut f = if let Some(mut c) = c {
            // for the miller loop with embedded exponent, f will be set to c at the beginning of the function, and we
            // will multiply by c again due to the last two values of the pseudo-binary encoding (BN12_381_PBE) being 1.
            // Therefore, the final value of f at the end of this block is c^3.
            let mut c3 = c;
            c.square_assign();
            c3 *= &c;
            c3
        } else {
            Self::Fp12::ONE
        };

        let mut Q_acc = Q_acc;

        // Special case the first iteration of the Miller loop with pseudo_binary_encoding = 1:
        // this means that the first step is a double and add, but we need to separate the two steps since the optimized
        // `miller_double_and_add_step` will fail because Q_acc is equal to Q_signed on the first iteration
        let (Q_out_double, lines_2S) = Q_acc
            .into_iter()
            .map(|Q| Self::miller_double_step(&Q))
            .unzip::<_, _, Vec<_>, Vec<_>>();
        Q_acc = Q_out_double;

        let mut initial_lines = Vec::<EvaluatedLine<Fq2>>::new();

        let lines_iter = izip!(lines_2S.iter(), xy_fracs.iter());
        for (line_2S, xy_frac) in lines_iter {
            let line = line_2S.evaluate(xy_frac);
            initial_lines.push(line);
        }

        let (Q_out_add, lines_S_plus_Q) = Q_acc
            .iter()
            .zip(Q.iter())
            .map(|(Q_acc, Q)| Self::miller_add_step(Q_acc, Q))
            .unzip::<_, _, Vec<_>, Vec<_>>();
        Q_acc = Q_out_add;

        let lines_iter = izip!(lines_S_plus_Q.iter(), xy_fracs.iter());
        for (lines_S_plus_Q, xy_frac) in lines_iter {
            let line = lines_S_plus_Q.evaluate(xy_frac);
            initial_lines.push(line);
        }

        f = Self::evaluate_lines_vec(f, initial_lines);

        (f, Q_acc)
    }

    /// After running the main body of the Miller loop, we conjugate f due to the curve seed x being negative.
    fn post_loop(
        f: &Fq12,
        Q_acc: Vec<AffinePoint<Fq2>>,
        _Q: &[AffinePoint<Fq2>],
        _c: Option<Fq12>,
        _xy_fracs: &[(Fq, Fq)],
    ) -> (Fq12, Vec<AffinePoint<Fq2>>) {
        // Conjugate for negative component of the seed
        // Explanation:
        // The general Miller loop formula implies that f_{-x} = 1/f_x. To avoid an inversion, we use the fact that
        // for the final exponentiation, we only need the Miller loop result up to multiplication by some proper subfield
        // of Fp12. Using the fact that Fp12 is a quadratic extension of Fp6, we have that f_x * conjugate(f_x) * 1/f_x lies in Fp6.
        // Therefore we conjugate f_x instead of taking the inverse.
        let f = f.conjugate();
        (f, Q_acc)
    }
}