halo2curves/pluto_eris/
fp12.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
use super::fp::Fp;
use super::fp2::Fp2;
use super::fp6::Fp6;
use crate::ff_ext::{
    quadratic::{QuadExtField, QuadExtFieldArith, QuadSparseMul},
    ExtField,
};
use ff::Field;

/// -GAMMA is a quadratic non-residue in Fp6. Fp12 = Fp6[X]/(X^2 + GAMMA)
/// We introduce the variable w such that w^2 = -GAMMA
/// GAMMA = - v
pub type Fp12 = QuadExtField<Fp6>;

impl QuadExtFieldArith for Fp12 {
    type Base = Fp6;
}

impl QuadSparseMul for Fp12 {
    type Base = Fp2;
}

impl ExtField for Fp12 {
    const NON_RESIDUE: Self = Fp12::zero(); // no needs

    fn frobenius_map(&mut self, power: usize) {
        self.c0.frobenius_map(power);
        self.c1.frobenius_map(power);
        self.c1.c0.mul_assign(&FROBENIUS_COEFF_FP12_C1[power % 12]);
        self.c1.c1.mul_assign(&FROBENIUS_COEFF_FP12_C1[power % 12]);
        self.c1.c2.mul_assign(&FROBENIUS_COEFF_FP12_C1[power % 12]);
    }
}

crate::impl_binops_additive!(Fp12, Fp12);
crate::impl_binops_multiplicative!(Fp12, Fp12);
crate::impl_binops_calls!(Fp12);
crate::impl_sum_prod!(Fp12);
crate::impl_cyclotomic_square!(Fp2, Fp12);

/// Fp2(v)^((p^i-1)/6) for i=0,...,11
pub const FROBENIUS_COEFF_FP12_C1: [Fp2; 12] = [
    // Fp2(v)**(((p^0) - 1) / 6)
    Fp2::ONE,
    // Fp2(v)**(((p^1) - 1) / 6)
    Fp2 {
        // 0x3c3ad3da8b99cb1df0709dc343113ccd9892dedd51f30695d89c647b90de8f41df055384b9e6cfd4e70648622c750f32ee965dfef2303d3
        c0: Fp::from_raw([
            0x2ee965dfef2303d3,
            0x4e70648622c750f3,
            0x1df055384b9e6cfd,
            0x5d89c647b90de8f4,
            0xd9892dedd51f3069,
            0xdf0709dc343113cc,
            0x03c3ad3da8b99cb1,
        ]),
        // 0x149fd9ed2c7affe7aaa3b912182da22dccb29838628f04b6f333d052540294889f03876b2ddb143559f9373f4cf44e6afa0be24ad758a5ff
        c1: Fp::from_raw([
            0xfa0be24ad758a5ff,
            0x59f9373f4cf44e6a,
            0x9f03876b2ddb1435,
            0xf333d05254029488,
            0xccb29838628f04b6,
            0xaaa3b912182da22d,
            0x149fd9ed2c7affe7,
        ]),
    },
    // Fp2(v)**(((p^2) - 1) / 6)
    Fp2 {
        // 0x480000000000360001c950000d7ee0e4a803c956d01c903d720dc8ad8b38dffaf50c100004c37fffffff
        c0: Fp::from_raw([
            0x100004c37fffffff,
            0xc8ad8b38dffaf50c,
            0xc956d01c903d720d,
            0x50000d7ee0e4a803,
            0x00000000360001c9,
            0x0000000000004800,
            0x0000000000000000,
        ]),
        c1: Fp::ZERO,
    },
    // Fp2(v)**(((p^3) - 1) / 6)
    Fp2 {
        // 0x1baee9e044d94d205764b80089c40010af5ca1e56a2a81e6a5d8739325984fc889d390efef216fe4f4af912a897f60a128a3be71be4995ca
        c0: Fp::from_raw([
            0x28a3be71be4995ca,
            0xf4af912a897f60a1,
            0x89d390efef216fe4,
            0xa5d8739325984fc8,
            0xaf5ca1e56a2a81e6,
            0x5764b80089c40010,
            0x1baee9e044d94d20,
        ]),
        // 0x20d4c11700e832829b26f1795339413be65e47a7716bc8bc07cd6b44b03ef1130b3c35a77291b29d6f45d28e4ef1ecb9678f4479a1151232
        c1: Fp::from_raw([
            0x678f4479a1151232,
            0x6f45d28e4ef1ecb9,
            0x0b3c35a77291b29d,
            0x07cd6b44b03ef113,
            0xe65e47a7716bc8bc,
            0x9b26f1795339413b,
            0x20d4c11700e83282,
        ]),
    },
    // Fp2(v)**(((p^4) - 1) / 6)
    Fp2 {
        // 0x480000000000360001c950000d7ee0e4a803c956d01c903d720dc8ad8b38dffaf50c100004c37ffffffe
        c0: Fp::from_raw([
            0x100004c37ffffffe,
            0xc8ad8b38dffaf50c,
            0xc956d01c903d720d,
            0x50000d7ee0e4a803,
            0x00000000360001c9,
            0x0000000000004800,
            0x0000000000000000,
        ]),
        c1: Fp::ZERO,
    },
    // Fp2(v)**(((p^5) - 1) / 6)
    Fp2 {
        // 0x17eb3ca29c1fb06e785dae245592ec43d5d373f7950b517d484ead4b6c8a66d46be33bb7a38302e7a63f2ca466b80fadf9ba5891cf2691f7
        c0: Fp::from_raw([
            0xf9ba5891cf2691f7,
            0xa63f2ca466b80fad,
            0x6be33bb7a38302e7,
            0x484ead4b6c8a66d4,
            0xd5d373f7950b517d,
            0x785dae245592ec43,
            0x17eb3ca29c1fb06e,
        ]),
        // 0xc34e729d46d329af08338673b0b9f0e19abaf6f0edcc40514999af25c3c5c8a6c38ae3c44b69e68154c9b4f01fd9e4e6d83622ec9bc6c33
        c1: Fp::from_raw([
            0x6d83622ec9bc6c33,
            0x154c9b4f01fd9e4e,
            0x6c38ae3c44b69e68,
            0x14999af25c3c5c8a,
            0x19abaf6f0edcc405,
            0xf08338673b0b9f0e,
            0x0c34e729d46d329a,
        ]),
    },
    // Fp2(v)**(((p^6) - 1) / 6)
    Fp2 {
        // 0x24000000000024000130e0000d7f70e4a803ca76f439266f443f9a5cda8a6c7be4a7a5fe8fadffd6a2a7e8c30006b9459ffffcd300000000
        c0: Fp::from_raw([
            0x9ffffcd300000000,
            0xa2a7e8c30006b945,
            0xe4a7a5fe8fadffd6,
            0x443f9a5cda8a6c7b,
            0xa803ca76f439266f,
            0x0130e0000d7f70e4,
            0x2400000000002400,
        ]),
        c1: Fp::ZERO,
    },
    // Fp2(v)**(((p^7) - 1) / 6)
    Fp2 {
        // 0x203c52c25746874e2229d623d94e5d17ce7a9c891f19f605e6b5d415217c8387c6b750c6440f92d95437843cdd3f6852711696f310dcfc2e
        c0: Fp::from_raw([
            0x711696f310dcfc2e,
            0x5437843cdd3f6852,
            0xc6b750c6440f92d9,
            0xe6b5d415217c8387,
            0xce7a9c891f19f605,
            0x2229d623d94e5d17,
            0x203c52c25746874e,
        ]),
        // 0xf602612d3852418568d26edf551ceb6db51323e91aa21b8510bca0a8687d7f345a41e9361d2eba148aeb183b3126adaa5f41a8828a75a02
        c1: Fp::from_raw([
            0xa5f41a8828a75a02,
            0x48aeb183b3126ada,
            0x45a41e9361d2eba1,
            0x510bca0a8687d7f3,
            0xdb51323e91aa21b8,
            0x568d26edf551ceb6,
            0x0f602612d3852418,
        ]),
    },
    // Fp2(v)**(((p^8) - 1) / 6)
    Fp2 {
        // 0x24000000000024000130e0000d7f28e4a803ca76be3924a5f43f8cddf9a5c4781b50d5e1ff708dc8d9fa5d8a200bc4398ffff80f80000002
        c0: Fp::from_raw([
            0x8ffff80f80000002,
            0xd9fa5d8a200bc439,
            0x1b50d5e1ff708dc8,
            0xf43f8cddf9a5c478,
            0xa803ca76be3924a5,
            0x0130e0000d7f28e4,
            0x2400000000002400,
        ]),
        c1: Fp::ZERO,
    },
    // Fp2(v)**(((p^9) - 1) / 6)
    Fp2 {
        // 0x851161fbb26d6dfa9cc27ff83bb70d3f8a728918a0ea4889e6726c9b4f21cb35ad4150ea08c8ff1adf85798768758a4775c3e6141b66a37
        c0: Fp::from_raw([
            0x775c3e6141b66a37,
            0xadf85798768758a4,
            0x5ad4150ea08c8ff1,
            0x9e6726c9b4f21cb3,
            0xf8a728918a0ea488,
            0xa9cc27ff83bb70d3,
            0x0851161fbb26d6df,
        ]),
        // 0x32b3ee8ff17f17d6609ee86ba462fa8c1a582cf82cd5db33c722f182a4b7b68d96b70571d1c4d3933621634b114cc8c3870b8595eeaedcf
        c1: Fp::from_raw([
            0x3870b8595eeaedcf,
            0x33621634b114cc8c,
            0xd96b70571d1c4d39,
            0x3c722f182a4b7b68,
            0xc1a582cf82cd5db3,
            0x6609ee86ba462fa8,
            0x032b3ee8ff17f17d,
        ]),
    },
    // Fp2(v)**(((p^10) - 1) / 6)
    Fp2 {
        // 0x24000000000024000130e0000d7f28e4a803ca76be3924a5f43f8cddf9a5c4781b50d5e1ff708dc8d9fa5d8a200bc4398ffff80f80000003
        c0: Fp::from_raw([
            0x8ffff80f80000003,
            0xd9fa5d8a200bc439,
            0x1b50d5e1ff708dc8,
            0xf43f8cddf9a5c478,
            0xa803ca76be3924a5,
            0x0130e0000d7f28e4,
            0x2400000000002400,
        ]),
        c1: Fp::ZERO,
    },
    // Fp2(v)**(((p^11) - 1) / 6)
    Fp2 {
        // 0xc14c35d63e0739188d331dbb7ec84a0d230567f5f2dd4f1fbf0ed116e0005a778c46a46ec2afceefc68bc1e994ea997a645a44130d96e0a
        c0: Fp::from_raw([
            0xa645a44130d96e0a,
            0xfc68bc1e994ea997,
            0x78c46a46ec2afcee,
            0xfbf0ed116e0005a7,
            0xd230567f5f2dd4f1,
            0x88d331dbb7ec84a0,
            0x0c14c35d63e07391,
        ]),
        // 0x17cb18d62b92f16510ada798d273d1d68e581b07e55c626a2fa5ff6a7e4e0ff1786ef7c24af7616e8d5b4d73fe091af7327c9aa4364393ce
        c1: Fp::from_raw([
            0x327c9aa4364393ce,
            0x8d5b4d73fe091af7,
            0x786ef7c24af7616e,
            0x2fa5ff6a7e4e0ff1,
            0x8e581b07e55c626a,
            0x10ada798d273d1d6,
            0x17cb18d62b92f165,
        ]),
    },
];

#[cfg(test)]
mod test {
    use super::*;
    crate::field_testing_suite!(Fp12, "field_arithmetic");
    // extension field-specific
    crate::field_testing_suite!(Fp12, "quadratic_sparse_mul", Fp6, Fp2);
    crate::field_testing_suite!(
        Fp12,
        "frobenius",
        // Frobenius endomorphism power parameter for extension field
        //  ϕ: E → E
        //  (x, y) ↦ (x^p, y^p)
        // p: modulus of base field (Here, Fp::MODULUS)
        [
            0x9ffffcd300000001,
            0xa2a7e8c30006b945,
            0xe4a7a5fe8fadffd6,
            0x443f9a5cda8a6c7b,
            0xa803ca76f439266f,
            0x0130e0000d7f70e4,
            0x2400000000002400,
        ]
    );
}