halo2_proofs/poly/
commitment.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
//! This module contains an implementation of the polynomial commitment scheme
//! described in the [Halo][halo] paper.
//!
//! [halo]: https://eprint.iacr.org/2019/1021

use super::{Coeff, LagrangeCoeff, Polynomial};
use crate::arithmetic::{
    best_fft, best_multiexp, parallelize, CurveAffine, CurveExt, FieldExt, Group,
};
use crate::helpers::CurveRead;

use ff::{Field, PrimeField};
use group::{prime::PrimeCurveAffine, Curve, Group as _};
use std::ops::{Add, AddAssign, Mul, MulAssign};

mod msm;
mod prover;
mod verifier;

pub use msm::MSM;
pub use prover::create_proof;
pub use verifier::{verify_proof, Accumulator, Guard};

use std::io;

/// These are the public parameters for the polynomial commitment scheme.
#[derive(Clone, Debug)]
pub struct Params<C: CurveAffine> {
    pub(crate) k: u32,
    pub(crate) n: u64,
    pub(crate) g: Vec<C>,
    pub(crate) g_lagrange: Vec<C>,
    pub(crate) w: C,
    pub(crate) u: C,
}

impl<C: CurveAffine> Params<C> {
    /// Initializes parameters for the curve, given a random oracle to draw
    /// points from.
    pub fn new(k: u32) -> Self {
        // This is usually a limitation on the curve, but we also want 32-bit
        // architectures to be supported.
        assert!(k < 32);

        // In src/arithmetic/fields.rs we ensure that usize is at least 32 bits.

        let n: u64 = 1 << k;

        let g_projective = {
            let mut g = Vec::with_capacity(n as usize);
            g.resize(n as usize, C::Curve::identity());

            parallelize(&mut g, move |g, start| {
                let hasher = C::CurveExt::hash_to_curve("Halo2-Parameters");

                for (i, g) in g.iter_mut().enumerate() {
                    let i = (i + start) as u32;

                    let mut message = [0u8; 5];
                    message[1..5].copy_from_slice(&i.to_le_bytes());

                    *g = hasher(&message);
                }
            });

            g
        };

        let g = {
            let mut g = vec![C::identity(); n as usize];
            parallelize(&mut g, |g, starts| {
                C::Curve::batch_normalize(&g_projective[starts..(starts + g.len())], g);
            });
            g
        };

        // Let's evaluate all of the Lagrange basis polynomials
        // using an inverse FFT.
        let mut alpha_inv = <<C as PrimeCurveAffine>::Curve as Group>::Scalar::ROOT_OF_UNITY_INV;
        for _ in k..C::Scalar::S {
            alpha_inv = alpha_inv.square();
        }
        let mut g_lagrange_projective = g_projective;
        best_fft(&mut g_lagrange_projective, alpha_inv, k);
        let minv = C::Scalar::TWO_INV.pow_vartime(&[k as u64, 0, 0, 0]);
        parallelize(&mut g_lagrange_projective, |g, _| {
            for g in g.iter_mut() {
                *g *= minv;
            }
        });

        let g_lagrange = {
            let mut g_lagrange = vec![C::identity(); n as usize];
            parallelize(&mut g_lagrange, |g_lagrange, starts| {
                C::Curve::batch_normalize(
                    &g_lagrange_projective[starts..(starts + g_lagrange.len())],
                    g_lagrange,
                );
            });
            drop(g_lagrange_projective);
            g_lagrange
        };

        let hasher = C::CurveExt::hash_to_curve("Halo2-Parameters");
        let w = hasher(&[1]).to_affine();
        let u = hasher(&[2]).to_affine();

        Params {
            k,
            n,
            g,
            g_lagrange,
            w,
            u,
        }
    }

    /// This computes a commitment to a polynomial described by the provided
    /// slice of coefficients. The commitment will be blinded by the blinding
    /// factor `r`.
    pub fn commit(&self, poly: &Polynomial<C::Scalar, Coeff>, r: Blind<C::Scalar>) -> C::Curve {
        let mut tmp_scalars = Vec::with_capacity(poly.len() + 1);
        let mut tmp_bases = Vec::with_capacity(poly.len() + 1);

        tmp_scalars.extend(poly.iter());
        tmp_scalars.push(r.0);

        tmp_bases.extend(self.g.iter());
        tmp_bases.push(self.w);

        best_multiexp::<C>(&tmp_scalars, &tmp_bases)
    }

    /// This commits to a polynomial using its evaluations over the $2^k$ size
    /// evaluation domain. The commitment will be blinded by the blinding factor
    /// `r`.
    pub fn commit_lagrange(
        &self,
        poly: &Polynomial<C::Scalar, LagrangeCoeff>,
        r: Blind<C::Scalar>,
    ) -> C::Curve {
        let mut tmp_scalars = Vec::with_capacity(poly.len() + 1);
        let mut tmp_bases = Vec::with_capacity(poly.len() + 1);

        tmp_scalars.extend(poly.iter());
        tmp_scalars.push(r.0);

        tmp_bases.extend(self.g_lagrange.iter());
        tmp_bases.push(self.w);

        best_multiexp::<C>(&tmp_scalars, &tmp_bases)
    }

    /// Generates an empty multiscalar multiplication struct using the
    /// appropriate params.
    pub fn empty_msm(&self) -> MSM<C> {
        MSM::new(self)
    }

    /// Getter for g generators
    pub fn get_g(&self) -> Vec<C> {
        self.g.clone()
    }

    /// Writes params to a buffer.
    pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
        writer.write_all(&self.k.to_le_bytes())?;
        for g_element in &self.g {
            writer.write_all(g_element.to_bytes().as_ref())?;
        }
        for g_lagrange_element in &self.g_lagrange {
            writer.write_all(g_lagrange_element.to_bytes().as_ref())?;
        }
        writer.write_all(self.w.to_bytes().as_ref())?;
        writer.write_all(self.u.to_bytes().as_ref())?;

        Ok(())
    }

    /// Reads params from a buffer.
    pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
        let mut k = [0u8; 4];
        reader.read_exact(&mut k[..])?;
        let k = u32::from_le_bytes(k);

        let n: u64 = 1 << k;

        let g: Vec<_> = (0..n).map(|_| C::read(reader)).collect::<Result<_, _>>()?;
        let g_lagrange: Vec<_> = (0..n).map(|_| C::read(reader)).collect::<Result<_, _>>()?;

        let w = C::read(reader)?;
        let u = C::read(reader)?;

        Ok(Params {
            k,
            n,
            g,
            g_lagrange,
            w,
            u,
        })
    }
}

/// Wrapper type around a blinding factor.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct Blind<F>(pub F);

impl<F: FieldExt> Default for Blind<F> {
    fn default() -> Self {
        Blind(F::one())
    }
}

impl<F: FieldExt> Add for Blind<F> {
    type Output = Self;

    fn add(self, rhs: Blind<F>) -> Self {
        Blind(self.0 + rhs.0)
    }
}

impl<F: FieldExt> Mul for Blind<F> {
    type Output = Self;

    fn mul(self, rhs: Blind<F>) -> Self {
        Blind(self.0 * rhs.0)
    }
}

impl<F: FieldExt> AddAssign for Blind<F> {
    fn add_assign(&mut self, rhs: Blind<F>) {
        self.0 += rhs.0;
    }
}

impl<F: FieldExt> MulAssign for Blind<F> {
    fn mul_assign(&mut self, rhs: Blind<F>) {
        self.0 *= rhs.0;
    }
}

impl<F: FieldExt> AddAssign<F> for Blind<F> {
    fn add_assign(&mut self, rhs: F) {
        self.0 += rhs;
    }
}

impl<F: FieldExt> MulAssign<F> for Blind<F> {
    fn mul_assign(&mut self, rhs: F) {
        self.0 *= rhs;
    }
}

#[test]
fn test_commit_lagrange_epaffine() {
    const K: u32 = 6;

    use rand_core::OsRng;

    use crate::pasta::{EpAffine, Fq};
    let params = Params::<EpAffine>::new(K);
    let domain = super::EvaluationDomain::new(1, K);

    let mut a = domain.empty_lagrange();

    for (i, a) in a.iter_mut().enumerate() {
        *a = Fq::from(i as u64);
    }

    let b = domain.lagrange_to_coeff(a.clone());

    let alpha = Blind(Fq::random(OsRng));

    assert_eq!(params.commit(&b, alpha), params.commit_lagrange(&a, alpha));
}

#[test]
fn test_commit_lagrange_eqaffine() {
    const K: u32 = 6;

    use rand_core::OsRng;

    use crate::pasta::{EqAffine, Fp};
    let params = Params::<EqAffine>::new(K);
    let domain = super::EvaluationDomain::new(1, K);

    let mut a = domain.empty_lagrange();

    for (i, a) in a.iter_mut().enumerate() {
        *a = Fp::from(i as u64);
    }

    let b = domain.lagrange_to_coeff(a.clone());

    let alpha = Blind(Fp::random(OsRng));

    assert_eq!(params.commit(&b, alpha), params.commit_lagrange(&a, alpha));
}

#[test]
fn test_opening_proof() {
    const K: u32 = 6;

    use ff::Field;
    use rand_core::OsRng;

    use super::{
        commitment::{Blind, Params},
        EvaluationDomain,
    };
    use crate::arithmetic::{eval_polynomial, FieldExt};
    use crate::pasta::{EpAffine, Fq};
    use crate::transcript::{
        Blake2bRead, Blake2bWrite, Challenge255, Transcript, TranscriptRead, TranscriptWrite,
    };

    let rng = OsRng;

    let params = Params::<EpAffine>::new(K);
    let mut params_buffer = vec![];
    params.write(&mut params_buffer).unwrap();
    let params: Params<EpAffine> = Params::read::<_>(&mut &params_buffer[..]).unwrap();

    let domain = EvaluationDomain::new(1, K);

    let mut px = domain.empty_coeff();

    for (i, a) in px.iter_mut().enumerate() {
        *a = Fq::from(i as u64);
    }

    let blind = Blind(Fq::random(rng));

    let p = params.commit(&px, blind).to_affine();

    let mut transcript = Blake2bWrite::<Vec<u8>, EpAffine, Challenge255<EpAffine>>::init(vec![]);
    transcript.write_point(p).unwrap();
    let x = transcript.squeeze_challenge_scalar::<()>();
    // Evaluate the polynomial
    let v = eval_polynomial(&px, *x);
    transcript.write_scalar(v).unwrap();

    let (proof, ch_prover) = {
        create_proof(&params, rng, &mut transcript, &px, blind, *x).unwrap();
        let ch_prover = transcript.squeeze_challenge();
        (transcript.finalize(), ch_prover)
    };

    // Verify the opening proof
    let mut transcript = Blake2bRead::<&[u8], EpAffine, Challenge255<EpAffine>>::init(&proof[..]);
    let p_prime = transcript.read_point().unwrap();
    assert_eq!(p, p_prime);
    let x_prime = transcript.squeeze_challenge_scalar::<()>();
    assert_eq!(*x, *x_prime);
    let v_prime = transcript.read_scalar().unwrap();
    assert_eq!(v, v_prime);

    let mut commitment_msm = params.empty_msm();
    commitment_msm.append_term(Field::one(), p);
    let guard = verify_proof(&params, commitment_msm, &mut transcript, *x, v).unwrap();
    let ch_verifier = transcript.squeeze_challenge();
    assert_eq!(*ch_prover, *ch_verifier);

    // Test guard behavior prior to checking another proof
    {
        // Test use_challenges()
        let msm_challenges = guard.clone().use_challenges();
        assert!(msm_challenges.eval());

        // Test use_g()
        let g = guard.compute_g();
        let (msm_g, _accumulator) = guard.clone().use_g(g);
        assert!(msm_g.eval());
    }
}