bitcode/
pack.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
use crate::coder::Result;
use crate::consume::{consume_byte, consume_byte_arrays, consume_bytes};
use crate::error::err;
use crate::fast::CowSlice;
use crate::pack_ints::SizedInt;
use alloc::vec::Vec;

/// Possible states per byte in descending order. Each packed byte will use `log2(states)` bits.
#[repr(u8)]
#[derive(Copy, Clone, PartialEq, PartialOrd)]
enum Packing {
    _256 = 0,
    _16,
    _6,
    _4,
    _3,
    _2,
}

impl Packing {
    fn new(max: u8) -> Self {
        match max {
            // We could encode max 0 as nothing, but that could allocate unbounded memory when decoding.
            0..=1 => Self::_2,
            2 => Self::_3,
            3 => Self::_4,
            4..=5 => Self::_6,
            6..=15 => Self::_16,
            _ => Self::_256,
        }
    }

    fn write(self, out: &mut Vec<u8>, offset_by_min: bool) {
        // Encoded in such a way such that 0 is `Self::_256` and higher numbers are smaller packing.
        // Also makes `Self::_256` with offset_by_min = true is unrepresentable.
        out.push(self as u8 * 2 - offset_by_min as u8);
    }

    fn read(input: &mut &[u8]) -> Result<(Self, bool)> {
        let v = consume_byte(input)?;
        let p_u8 = crate::nightly::div_ceil_u8(v, 2);
        let offset_by_min = v & 1 != 0;
        let p = match p_u8 {
            0 => Self::_256,
            1 => Self::_16,
            2 => Self::_6,
            3 => Self::_4,
            4 => Self::_3,
            5 => Self::_2,
            _ => return invalid_packing(),
        };
        debug_assert_eq!(p as u8, p_u8);
        Ok((p, offset_by_min))
    }
}

pub(crate) fn invalid_packing<T>() -> Result<T> {
    err("invalid packing")
}

/// Packs 8 bools per byte.
pub fn pack_bools(bools: &[bool], out: &mut Vec<u8>) {
    pack_arithmetic::<2>(bytemuck::cast_slice(bools), out);
}

/// Unpacks 8 bools per byte. `out` will be overwritten with the bools.
pub fn unpack_bools(input: &mut &[u8], length: usize, out: &mut CowSlice<bool>) -> Result<()> {
    // TODO could borrow if length == 1.
    let mut set_owned = out.set_owned();
    let out: &mut Vec<bool> = &mut set_owned;
    // Safety: u8 and bool have same size/align and `out` will only contain bytes that are 0 or 1.
    let out: &mut Vec<u8> = unsafe { core::mem::transmute(out) };
    unpack_arithmetic::<2>(input, length, out)
}

fn skip_packing(length: usize) -> bool {
    length <= 2 // Packing takes at least 2 bytes, so it can only expand <= 2 bytes.
}

pub trait Byte: SizedInt {}
impl Byte for u8 {}
impl Byte for i8 {}

/// Packs multiple bytes into single bytes and writes them to `out`. This only works if
/// `max - min < 16`, otherwise this just copies `bytes` to `out`.
///
/// These particular tradeoffs were selected so input bytes don't span multiple output bytes to
/// avoid confusing bytewise compression algorithms (e.g. Deflate).
///
/// Mutates `bytes` to avoid copying them. The remaining `bytes` should be considered garbage.
pub fn pack_bytes<T: Byte>(bytes: &mut [T], out: &mut Vec<u8>) {
    if skip_packing(bytes.len()) {
        out.extend_from_slice(bytemuck::must_cast_slice(bytes));
        return;
    }
    let (min, max) = crate::pack_ints::minmax(bytes);

    // i8 packs as u8 if positive.
    let basic_packing = if min >= T::default() {
        Packing::new(bytemuck::must_cast(max))
    } else {
        Packing::_256 // Any negative i8 as u8 is > 15 and can't be packed without offset_packing.
    };

    // u8::wrapping_sub == i8::wrapping_sub, so we can use u8s from here onward.
    let min: u8 = bytemuck::must_cast(min);
    let max: u8 = bytemuck::must_cast(max);
    let bytes: &mut [u8] = bytemuck::must_cast_slice_mut(bytes);
    pack_bytes_unsigned(bytes, out, basic_packing, min, max);
}

/// [`pack_bytes`] but after i8s have been cast to u8s.
fn pack_bytes_unsigned(
    bytes: &mut [u8],
    out: &mut Vec<u8>,
    basic_packing: Packing,
    min: u8,
    max: u8,
) {
    // If subtracting min from all bytes results in a better packing do it, otherwise don't bother.
    let offset_packing = Packing::new(max.wrapping_sub(min));
    let p = if offset_packing > basic_packing && bytes.len() > 5 {
        for b in bytes.iter_mut() {
            *b = b.wrapping_sub(min);
        }
        offset_packing.write(out, true);
        out.push(min);
        offset_packing
    } else {
        basic_packing.write(out, false);
        basic_packing
    };

    match p {
        Packing::_256 => out.extend_from_slice(bytes),
        Packing::_16 => pack_arithmetic::<16>(bytes, out),
        Packing::_6 => pack_arithmetic::<6>(bytes, out),
        Packing::_4 => pack_arithmetic::<4>(bytes, out),
        Packing::_3 => pack_arithmetic::<3>(bytes, out),
        Packing::_2 => pack_arithmetic::<2>(bytes, out),
    }
}

/// Opposite of `pack_bytes`. Needs to know the `length` in bytes. `out` is overwritten with the bytes.
pub fn unpack_bytes<'a, T: Byte>(
    input: &mut &'a [u8],
    length: usize,
    out: &mut CowSlice<'a, T>,
) -> Result<()> {
    unpack_bytes_unsigned(input, length, out.cast_mut())
}

/// [`unpack_bytes`] but after i8s have been cast to u8s.
fn unpack_bytes_unsigned<'a>(
    input: &mut &'a [u8],
    length: usize,
    out: &mut CowSlice<'a, u8>,
) -> Result<()> {
    if skip_packing(length) {
        out.set_borrowed(consume_bytes(input, length)?);
        return Ok(());
    }

    let (p, offset_by_min) = Packing::read(input)?;
    let min = offset_by_min.then(|| consume_byte(input)).transpose()?;

    if p == Packing::_256 {
        debug_assert!(min.is_none()); // Packing::_256 with min should be unrepresentable.
        out.set_borrowed(consume_bytes(input, length)?);
        return Ok(());
    }

    let mut set_owned = out.set_owned();
    let out = &mut *set_owned;
    match p {
        Packing::_16 => unpack_arithmetic::<16>(input, length, out)?,
        Packing::_6 => unpack_arithmetic::<6>(input, length, out)?,
        Packing::_4 => unpack_arithmetic::<4>(input, length, out)?,
        Packing::_3 => unpack_arithmetic::<3>(input, length, out)?,
        Packing::_2 => unpack_arithmetic::<2>(input, length, out)?,
        Packing::_256 => unreachable!(),
    }
    if let Some(min) = min {
        for v in out {
            *v = v.wrapping_add(min);
        }
    }
    Ok(())
}

/// Like `pack_bytes` but all values are less than `N` so it can avoid encoding the packing.
pub fn pack_bytes_less_than<const N: usize>(bytes: &[u8], out: &mut Vec<u8>) {
    debug_assert!(bytes.iter().all(|&b| (b as usize) < N));
    match Packing::new(N.saturating_sub(1) as u8) {
        Packing::_256 => out.extend_from_slice(bytes),
        Packing::_16 => pack_arithmetic::<16>(bytes, out),
        Packing::_6 => pack_arithmetic::<6>(bytes, out),
        Packing::_4 => pack_arithmetic::<4>(bytes, out),
        Packing::_3 => pack_arithmetic::<3>(bytes, out),
        Packing::_2 => pack_arithmetic::<2>(bytes, out),
    }
}

/// Like `unpack_bytes` but all values are less than `N` so it can avoid encoding the packing.
/// Bytes returned by this function are guaranteed less than `N`.
///
/// If `HISTOGRAM` is set to `N` it also returns a histogram of the output bytes. This is because
/// the histogram can be calculated much faster when operating on the packed bytes.
///
/// If `HISTOGRAM` is set to `0` it only checks variants < `N` and doesn't calculate a histogram.
pub fn unpack_bytes_less_than<'a, const N: usize, const HISTOGRAM: usize>(
    input: &mut &'a [u8],
    length: usize,
    out: &mut CowSlice<'a, u8>,
) -> Result<[usize; HISTOGRAM]> {
    assert!(HISTOGRAM == N || HISTOGRAM == 0);

    /// Checks that `unpacked` bytes are less than `N`. All of `unpacked` is assumed to be < `FACTOR`.
    /// `HISTOGRAM` must be 0.
    fn check_less_than<const N: usize, const HISTOGRAM: usize, const FACTOR: usize>(
        unpacked: &[u8],
    ) -> Result<[usize; HISTOGRAM]> {
        assert!(FACTOR >= N);
        debug_assert!(unpacked.iter().all(|&v| (v as usize) < FACTOR));
        if FACTOR > N && unpacked.iter().copied().max().unwrap_or(0) as usize >= N {
            return invalid_packing();
        }
        Ok(core::array::from_fn(|_| unreachable!("HISTOGRAM not 0")))
    }

    /// Returns `Ok(histogram)` if buckets after `OUT` are 0.
    fn check_histogram<const IN: usize, const OUT: usize>(
        histogram: [usize; IN],
    ) -> Result<[usize; OUT]> {
        let (histogram, remaining) = histogram.split_at(OUT);
        if remaining.iter().copied().sum::<usize>() != 0 {
            return invalid_packing();
        }
        Ok(*<&[usize; OUT]>::try_from(histogram).unwrap())
    }

    let p = Packing::new(N.saturating_sub(1) as u8);
    if p == Packing::_256 {
        let bytes = consume_bytes(input, length)?;
        out.set_borrowed(bytes);
        return if HISTOGRAM == 0 {
            check_less_than::<N, HISTOGRAM, 256>(bytes)
        } else {
            check_histogram(crate::histogram::histogram(bytes))
        };
    }

    /// `FACTOR_POW_DIVISOR == (FACTOR as usize).pow(factor_to_divisor::<FACTOR>() as u32)` but as a constant.
    fn unpack_arithmetic_less_than<
        const N: usize,
        const HISTOGRAM: usize,
        const FACTOR: usize,
        const FACTOR_POW_DIVISOR: usize,
    >(
        input: &mut &[u8],
        length: usize,
        out: &mut Vec<u8>,
    ) -> Result<[usize; HISTOGRAM]> {
        assert!(HISTOGRAM == N || HISTOGRAM == 0);
        assert!(FACTOR >= 2 && FACTOR >= N);
        let divisor = factor_to_divisor::<FACTOR>();
        assert_eq!(FACTOR.pow(divisor as u32), FACTOR_POW_DIVISOR);

        let original_input = *input;
        unpack_arithmetic::<FACTOR>(input, length, out)?;
        if HISTOGRAM == 0 {
            check_less_than::<N, HISTOGRAM, FACTOR>(out)
        } else {
            let floor = length / divisor;
            let ceil = crate::nightly::div_ceil_usize(length, divisor);
            let whole = &original_input[..floor];

            // Can only `partial_with_garbage % FACTOR` partial_length times as the rest are undefined garbage.
            let partial_length = length - floor * divisor;
            let partial_with_garbage = original_input[floor..ceil].first().copied();

            // POPCNT is much faster than histogram.
            let histogram = if FACTOR == 2 {
                assert_eq!(N, 2);
                assert_eq!(divisor, 8);
                let mut one_count = 0;
                let mut whole = whole;
                while let Ok(chunk) = consume_byte_arrays(&mut whole, 1) {
                    one_count += u64::from_ne_bytes(chunk[0]).count_ones() as usize;
                }
                for &byte in whole {
                    one_count += byte.count_ones() as usize;
                }
                if let Some(partial_with_garbage) = partial_with_garbage {
                    // Set undefined garbage bits to zero.
                    let partial = partial_with_garbage << (divisor - partial_length);
                    one_count += partial.count_ones() as usize;
                }
                Ok(core::array::from_fn(|i| match i {
                    0 => length - one_count,
                    1 => one_count,
                    _ => unreachable!(),
                }))
            } else {
                check_histogram(if whole.len() < 100 {
                    // Simple path: histogram of unpacked bytes.
                    let mut histogram = [0; FACTOR];
                    for &v in out.iter() {
                        // Safety: unpack_arithmetic::<FACTOR> returns bytes < FACTOR.
                        unsafe { *histogram.get_unchecked_mut(v as usize) += 1 };
                    }
                    histogram
                } else {
                    // High throughput path: histogram of packed bytes (one time cost of ~100ns).
                    let packed_histogram = check_histogram::<256, FACTOR_POW_DIVISOR>(
                        crate::histogram::histogram(whole),
                    )?;
                    let mut histogram: [_; FACTOR] = unpack_histogram(&packed_histogram);
                    if let Some(mut partial_with_garbage) = partial_with_garbage {
                        // .min(divisor) does nothing, it's only improve code gen.
                        for _ in 0..partial_length.min(divisor) {
                            histogram[partial_with_garbage as usize % FACTOR] += 1;
                            partial_with_garbage /= FACTOR as u8;
                        }
                    }
                    histogram
                })
            };
            if let Ok(h) = histogram {
                debug_assert_eq!(
                    h,
                    check_histogram(crate::histogram::histogram(out)).unwrap()
                );
            }
            histogram
        }
    }

    let mut set_owned = out.set_owned();
    let out = &mut *set_owned;
    match p {
        Packing::_16 => unpack_arithmetic_less_than::<N, HISTOGRAM, 16, 256>(input, length, out),
        Packing::_6 => unpack_arithmetic_less_than::<N, HISTOGRAM, 6, 216>(input, length, out),
        Packing::_4 => unpack_arithmetic_less_than::<N, HISTOGRAM, 4, 256>(input, length, out),
        Packing::_3 => unpack_arithmetic_less_than::<N, HISTOGRAM, 3, 243>(input, length, out),
        Packing::_2 => unpack_arithmetic_less_than::<N, HISTOGRAM, 2, 256>(input, length, out),
        Packing::_256 => unreachable!(),
    }
}

#[inline(never)]
fn unpack_histogram<const FACTOR: usize, const FACTOR_POW_DIVISOR: usize>(
    packed_histogram: &[usize; FACTOR_POW_DIVISOR],
) -> [usize; FACTOR] {
    let divisor = factor_to_divisor::<FACTOR>();
    assert_eq!(FACTOR.pow(divisor as u32), FACTOR_POW_DIVISOR);
    core::array::from_fn(|i| {
        let mut sum = 0;
        for level in 0..divisor {
            let width = FACTOR.pow(level as u32);
            let runs = FACTOR_POW_DIVISOR / (width * FACTOR);
            for run in 0..runs {
                let run_start = run * (width * FACTOR) + i * width;
                let section = &packed_histogram[run_start..run_start + width];
                sum += section.iter().copied().sum::<usize>();
            }
        }
        sum
    })
}

#[inline(always)]
fn factor_to_divisor<const FACTOR: usize>() -> usize {
    match FACTOR {
        2 => 8,
        3 => 5,
        4 => 4,
        6 => 3,
        16 => 2,
        _ => unreachable!(),
    }
}

/// Packs multiple bytes into one. All the bytes must be < `FACTOR`.
/// Factors 2,4,16 are bit packing. Factors 3,6 are arithmetic coding.
fn pack_arithmetic<const FACTOR: usize>(bytes: &[u8], out: &mut Vec<u8>) {
    debug_assert!(bytes.iter().all(|&v| v < FACTOR as u8));
    let divisor = factor_to_divisor::<FACTOR>();

    let floor = bytes.len() / divisor;
    let ceil = (bytes.len() + (divisor - 1)) / divisor;

    out.reserve(ceil);
    let packed = &mut out.spare_capacity_mut()[..ceil];

    for i in 0..floor {
        unsafe {
            packed.get_unchecked_mut(i).write(if FACTOR == 2 {
                let chunk = u64::from_le_bytes(*(bytes.as_ptr() as *const [u8; 8]).add(i));
                // https://stackoverflow.com/a/51750902
                (0x0102040810204080u64.wrapping_mul(chunk) >> 56) as u8
            } else {
                let mut acc = 0;
                for byte_index in 0..divisor {
                    let byte = *bytes.get_unchecked(i * divisor + byte_index);
                    acc += byte * (FACTOR as u8).pow(byte_index as u32);
                }
                acc
            });
        }
    }
    if floor < ceil {
        let mut acc = 0;
        for &v in bytes[floor * divisor..].iter().rev() {
            acc *= FACTOR as u8;
            acc += v;
        }
        packed[floor].write(acc);
    }
    // Safety: `ceil` elements after len were initialized by loops above.
    unsafe { out.set_len(out.len() + ceil) };
}

/// Opposite of `pack_arithmetic`. `out` will be overwritten with the unpacked bytes.
fn unpack_arithmetic<const FACTOR: usize>(
    input: &mut &[u8],
    unpacked_len: usize,
    out: &mut Vec<u8>,
) -> Result<()> {
    let divisor = factor_to_divisor::<FACTOR>();

    // TODO STRICT: check that packed.all(|&b| b < FACTOR.powi(divisor)).
    let floor = unpacked_len / divisor;
    let ceil = crate::nightly::div_ceil_usize(unpacked_len, divisor);
    let packed = consume_bytes(input, ceil)?;

    debug_assert!(out.is_empty());
    out.reserve(unpacked_len);
    let unpacked = &mut out.spare_capacity_mut()[..unpacked_len];

    for i in 0..floor {
        unsafe {
            let mut packed = *packed.get_unchecked(i);
            if FACTOR == 2 {
                // https://stackoverflow.com/a/51750902
                // Can't swap bytes of magic number to avoid swap bytes at runtime because of carries in multiply.
                let chunk =
                    ((0x8040201008040201u64.wrapping_mul(packed as u64) & 0x8080808080808080) >> 7)
                        .swap_bytes();
                *(unpacked.as_mut_ptr() as *mut [u8; 8]).add(i) = chunk.to_le_bytes();
            } else {
                for byte in unpacked.get_unchecked_mut(i * divisor..i * divisor + divisor) {
                    byte.write(packed % FACTOR as u8);
                    packed /= FACTOR as u8;
                }
            }
        }
    }
    if floor < ceil {
        let mut packed = packed[floor];
        for byte in unpacked[floor * divisor..].iter_mut() {
            byte.write(packed % FACTOR as u8);
            packed /= FACTOR as u8;
        }
    }
    // Safety: `unpacked_len` elements were initialized by the loops above.
    unsafe { out.set_len(unpacked_len) };
    Ok(())
}

#[cfg(test)]
mod tests {
    use crate::error::err;
    use alloc::borrow::ToOwned;
    use alloc::vec::Vec;
    use paste::paste;
    use test::{black_box, Bencher};

    fn pack_bytes<T: super::Byte>(bytes: &[T]) -> Vec<u8> {
        let mut out = vec![];
        super::pack_bytes(&mut bytes.to_owned(), &mut out);
        out
    }

    fn unpack_bytes<T: super::Byte>(mut packed: &[u8], length: usize) -> Vec<T> {
        let mut out = crate::fast::CowSlice::default();
        super::unpack_bytes(&mut packed, length, &mut out).unwrap();
        assert!(packed.is_empty());
        unsafe { out.as_slice(length).to_vec() }
    }

    #[test]
    fn test_pack_bytes_u8() {
        assert_eq!(pack_bytes(&[1u8, 2, 3, 4, 5, 6, 7]).len(), 5);
        assert_eq!(pack_bytes(&[201u8, 202, 203, 204, 205, 206, 207]).len(), 6);

        for max in 0..255u8 {
            for sub in [1, 2, 3, 4, 5, 15, 255] {
                let min = max.saturating_sub(sub);
                let original = [min, min, min, min, min, min, min, max];
                let packed = pack_bytes(&original);
                let unpacked = unpack_bytes(&packed, original.len());
                assert_eq!(original.as_slice(), unpacked.as_slice());
            }
        }
    }

    #[test]
    fn test_pack_bytes_i8() {
        assert_eq!(pack_bytes(&[1i8, 2, 3, 4, 5, 6, 7]).len(), 5);
        assert_eq!(pack_bytes(&[-1i8, -2, -3, -4, -5, -6, -7]).len(), 6);
        assert_eq!(pack_bytes(&[-3i8, -2, -1, 0, 1, 2, 3]).len(), 6);
        assert_eq!(
            pack_bytes(&[0i8, -1, 0, -1, 0, -1, 0]),
            [9, (-1i8) as u8, 0b1010101]
        );

        for max in i8::MIN..i8::MAX {
            for sub in [1, 2, 3, 4, 5, 15, 127] {
                let min = max.saturating_sub(sub);
                let original = [min, min, min, min, min, min, min, max];
                let packed = pack_bytes(&original);
                let unpacked = unpack_bytes(&packed, original.len());
                assert_eq!(original.as_slice(), unpacked.as_slice());
            }
        }
    }

    #[test]
    fn unpack_bytes_errors() {
        assert_eq!(
            super::unpack_bytes::<u8>(&mut [1].as_slice(), 5, &mut Default::default()),
            err("EOF")
        );
        assert_eq!(
            super::unpack_bytes::<u8>(&mut [255].as_slice(), 5, &mut Default::default()),
            super::invalid_packing()
        );
    }

    fn pack_arithmetic<const FACTOR: usize>(bytes: &[u8]) -> Vec<u8> {
        let mut out = vec![];
        super::pack_arithmetic::<FACTOR>(bytes, &mut out);
        out
    }

    #[test]
    fn test_pack_arithmetic() {
        assert_eq!(pack_arithmetic::<2>(&[1, 0, 1, 0]), [0b0101]);
        assert_eq!(
            pack_arithmetic::<2>(&[1, 0, 1, 0, 1, 0, 1, 0]),
            [0b01010101]
        );
        assert_eq!(
            pack_arithmetic::<2>(&[1, 0, 1, 0, 1, 0, 1, 0, 1]),
            [0b01010101, 0b1]
        );

        assert_eq!(pack_arithmetic::<3>(&[0]), [0]);
        assert_eq!(pack_arithmetic::<3>(&[0, 1]), [0 + 1 * 3]);
        assert_eq!(pack_arithmetic::<3>(&[0, 1, 2]), [0 + 1 * 3 + 2 * 3 * 3]);
        assert_eq!(
            pack_arithmetic::<3>(&[2, 0, 0, 0, 0, 0, 1, 2]),
            [2, 0 + 1 * 3 + 2 * 3 * 3]
        );

        assert_eq!(pack_arithmetic::<4>(&[1, 0]), [0b0001]);
        assert_eq!(pack_arithmetic::<4>(&[1, 0, 1, 0]), [0b00010001]);
        assert_eq!(
            pack_arithmetic::<4>(&[1, 0, 1, 0, 1, 0]),
            [0b00010001, 0b0001]
        );

        assert_eq!(pack_arithmetic::<6>(&[0]), [0]);
        assert_eq!(pack_arithmetic::<6>(&[0, 1]), [0 + 1 * 6]);
        assert_eq!(pack_arithmetic::<6>(&[0, 1, 2]), [0 + 1 * 6 + 2 * 6 * 6]);
        assert_eq!(
            pack_arithmetic::<6>(&[2, 0, 0, 0, 1, 2]),
            [2, 0 + 1 * 6 + 2 * 6 * 6]
        );

        assert_eq!(pack_arithmetic::<16>(&[1]), [0b0001]);
        assert_eq!(pack_arithmetic::<16>(&[1, 0]), [0b00000001]);
        assert_eq!(pack_arithmetic::<16>(&[1, 0, 1]), [0b00000001, 0b0001]);
    }

    #[test]
    fn test_unpack_arithmetic() {
        fn test<const FACTOR: usize>(bytes: &[u8]) {
            let packed = pack_arithmetic::<FACTOR>(bytes);

            let mut input = packed.as_slice();
            let mut bytes2 = vec![];
            super::unpack_arithmetic::<FACTOR>(&mut input, bytes.len(), &mut bytes2).unwrap();
            assert!(input.is_empty());
            assert_eq!(bytes, bytes2);
        }

        test::<2>(&[1, 0, 1, 0]);
        test::<2>(&[1, 0, 1, 0, 1, 0, 1, 0]);
        test::<2>(&[1, 0, 1, 0, 1, 0, 1, 0, 1]);

        test::<3>(&[0]);
        test::<3>(&[0, 1]);
        test::<3>(&[0, 1, 2]);
        test::<3>(&[2, 0, 0, 0, 0, 0, 1, 2]);

        test::<4>(&[1, 0]);
        test::<4>(&[1, 0, 1, 0]);
        test::<4>(&[1, 0, 1, 0, 1, 0]);

        test::<6>(&[0]);
        test::<6>(&[0, 1]);
        test::<6>(&[0, 1, 2]);
        test::<6>(&[2, 0, 0, 0, 1, 2]);

        test::<16>(&[1]);
        test::<16>(&[1, 0]);
        test::<16>(&[1, 0, 1]);
    }

    fn bench_pack_arithmetic<const FACTOR: usize>(b: &mut Bencher) {
        let bytes = vec![0; 1000];
        let mut out = Vec::with_capacity(bytes.len());
        b.iter(|| {
            out.clear();
            super::pack_arithmetic::<FACTOR>(&bytes, black_box(&mut out));
        });
    }

    fn bench_unpack_arithmetic<const FACTOR: usize>(b: &mut Bencher) {
        let unpacked_len = 1000;
        let packed = pack_arithmetic::<FACTOR>(&vec![0; unpacked_len]);
        let mut out = Vec::with_capacity(unpacked_len);

        b.iter(|| {
            let mut input = packed.as_slice();
            let input = black_box(&mut input);
            let unpacked_len = black_box(unpacked_len);
            out.clear();
            super::unpack_arithmetic::<FACTOR>(input, unpacked_len, black_box(&mut out)).unwrap();
        });
    }

    macro_rules! bench_n {
        ($bench:ident, $($n:literal),+) => {
            paste! {
                $(
                    #[bench]
                    fn [<$bench $n>](b: &mut Bencher) {
                        $bench::<$n>(b);
                    }
                )+
            }
        }
    }
    bench_n!(bench_pack_arithmetic, 2, 3, 4, 6, 16);
    bench_n!(bench_unpack_arithmetic, 2, 3, 4, 6, 16);

    fn test_pack_bytes_less_than_n<const N: usize, const FACTOR: usize>() {
        for n in [1, 11, 97, 991, 10007].into_iter().flat_map(|n_prime| {
            let divisor = if FACTOR == 256 {
                1
            } else {
                super::factor_to_divisor::<FACTOR>()
            };
            let n_factor = crate::nightly::div_ceil_usize(n_prime, divisor) * divisor;
            [n_factor, n_prime]
        }) {
            let bytes: Vec<_> = crate::random_data(n)
                .into_iter()
                .map(|v: usize| (v % N as usize) as u8)
                .collect();
            let n = bytes.len(); // random_data shrinks n on miri.

            #[cfg(feature = "std")]
            println!("n {n}, N {N}, FACTOR {FACTOR}");
            if N != FACTOR {
                let mut bytes = bytes.clone();
                bytes[n - 1] = (FACTOR - 1) as u8; // Make least 1 byte is out of bounds.
                let mut packed = vec![];
                super::pack_bytes_less_than::<FACTOR>(&bytes, &mut packed);

                assert!(super::unpack_bytes_less_than::<N, 0>(
                    &mut packed.as_slice(),
                    bytes.len(),
                    &mut crate::fast::CowSlice::default()
                )
                .is_err());
                assert!(super::unpack_bytes_less_than::<N, N>(
                    &mut packed.as_slice(),
                    bytes.len(),
                    &mut crate::fast::CowSlice::default()
                )
                .is_err());
            }

            let mut packed = vec![];
            super::pack_bytes_less_than::<N>(&bytes, &mut packed);

            let mut input = packed.as_slice();
            let mut unpacked = crate::fast::CowSlice::default();
            super::unpack_bytes_less_than::<N, 0>(&mut input, bytes.len(), &mut unpacked).unwrap();
            assert!(input.is_empty());
            assert_eq!(unsafe { unpacked.as_slice(bytes.len()) }, bytes);

            let mut input = packed.as_slice();
            let mut unpacked = crate::fast::CowSlice::default();
            let histogram =
                super::unpack_bytes_less_than::<N, N>(&mut input, bytes.len(), &mut unpacked)
                    .unwrap();
            assert!(input.is_empty());
            assert_eq!(unsafe { unpacked.as_slice(bytes.len()) }, bytes);
            assert_eq!(
                histogram.as_slice(),
                &crate::histogram::histogram(&bytes)[..N]
            );
        }
    }

    macro_rules! test_pack_bytes_less_than_n {
        ($($n:literal => $factor:literal),+) => {
            $(
                paste::paste! {
                    #[test]
                    fn [<test_pack_bytes_less_than_ $n>]() {
                        test_pack_bytes_less_than_n::<$n, $factor>();
                    }
                }
            )+
        }
    }
    // Test factors and +/- 1 to catch off by 1 errors.
    test_pack_bytes_less_than_n!(2 => 2, 3 => 3, 4 => 4, 5 => 6, 6 => 6, 7 => 16);
    test_pack_bytes_less_than_n!(15 => 16, 16 => 16, 17 => 256, 255 => 256, 256 => 256);

    macro_rules! bench_unpack_histogram {
        ($($f:literal => $fpd:literal),+) => {
            $(
                paste::paste! {
                    #[bench]
                    fn [<bench_unpack_histogram $f>](b: &mut Bencher) {
                        b.iter(|| {
                            super::unpack_histogram::<$f, $fpd>(black_box(&[0; $fpd]))
                        });
                    }
                }
            )+
        }
    }
    bench_unpack_histogram!(3 => 243, 4 => 256, 6 => 216, 16 => 256);

    macro_rules! bench_unpack_bytes_less_than {
        ($($n:literal),+) => {
            $(
                paste::paste! {
                    #[bench]
                    fn [<bench_unpack_bytes_less_than $n>](b: &mut Bencher) {
                        let mut out = crate::fast::CowSlice::default();
                        b.iter(|| {
                            super::unpack_bytes_less_than::<$n, 0>(black_box(&mut [0].as_slice()), black_box(1), black_box(&mut out)).unwrap();
                        });
                    }

                    #[bench]
                    fn [<bench_unpack_bytes_less_than $n _histogram>](b: &mut Bencher) {
                        let mut out = crate::fast::CowSlice::default();
                        b.iter(|| {
                            super::unpack_bytes_less_than::<$n, $n>(black_box(&mut [0].as_slice()), black_box(1), black_box(&mut out)).unwrap();
                        });
                    }
                }
            )+
        }
    }
    bench_unpack_bytes_less_than!(2, 3, 4, 6, 16, 256);
}