allocator_api2/stable/
boxed.rs

1//! The `Box<T>` type for heap allocation.
2//!
3//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
4//! heap allocation in Rust. Boxes provide ownership for this allocation, and
5//! drop their contents when they go out of scope. Boxes also ensure that they
6//! never allocate more than `isize::MAX` bytes.
7//!
8//! # Examples
9//!
10//! Move a value from the stack to the heap by creating a [`Box`]:
11//!
12//! ```
13//! let val: u8 = 5;
14//! let boxed: Box<u8> = Box::new(val);
15//! ```
16//!
17//! Move a value from a [`Box`] back to the stack by [dereferencing]:
18//!
19//! ```
20//! let boxed: Box<u8> = Box::new(5);
21//! let val: u8 = *boxed;
22//! ```
23//!
24//! Creating a recursive data structure:
25//!
26//! ```
27//! #[derive(Debug)]
28//! enum List<T> {
29//!     Cons(T, Box<List<T>>),
30//!     Nil,
31//! }
32//!
33//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
34//! println!("{list:?}");
35//! ```
36//!
37//! This will print `Cons(1, Cons(2, Nil))`.
38//!
39//! Recursive structures must be boxed, because if the definition of `Cons`
40//! looked like this:
41//!
42//! ```compile_fail,E0072
43//! # enum List<T> {
44//! Cons(T, List<T>),
45//! # }
46//! ```
47//!
48//! It wouldn't work. This is because the size of a `List` depends on how many
49//! elements are in the list, and so we don't know how much memory to allocate
50//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
51//! big `Cons` needs to be.
52//!
53//! # Memory layout
54//!
55//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
56//! its allocation. It is valid to convert both ways between a [`Box`] and a
57//! raw pointer allocated with the [`Global`] allocator, given that the
58//! [`Layout`] used with the allocator is correct for the type. More precisely,
59//! a `value: *mut T` that has been allocated with the [`Global`] allocator
60//! with `Layout::for_value(&*value)` may be converted into a box using
61//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
62//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
63//! [`Global`] allocator with [`Layout::for_value(&*value)`].
64//!
65//! For zero-sized values, the `Box` pointer still has to be [valid] for reads
66//! and writes and sufficiently aligned. In particular, casting any aligned
67//! non-zero integer literal to a raw pointer produces a valid pointer, but a
68//! pointer pointing into previously allocated memory that since got freed is
69//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
70//! be used is to use [`ptr::NonNull::dangling`].
71//!
72//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
73//! as a single pointer and is also ABI-compatible with C pointers
74//! (i.e. the C type `T*`). This means that if you have extern "C"
75//! Rust functions that will be called from C, you can define those
76//! Rust functions using `Box<T>` types, and use `T*` as corresponding
77//! type on the C side. As an example, consider this C header which
78//! declares functions that create and destroy some kind of `Foo`
79//! value:
80//!
81//! ```c
82//! /* C header */
83//!
84//! /* Returns ownership to the caller */
85//! struct Foo* foo_new(void);
86//!
87//! /* Takes ownership from the caller; no-op when invoked with null */
88//! void foo_delete(struct Foo*);
89//! ```
90//!
91//! These two functions might be implemented in Rust as follows. Here, the
92//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
93//! the ownership constraints. Note also that the nullable argument to
94//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
95//! cannot be null.
96//!
97//! ```
98//! #[repr(C)]
99//! pub struct Foo;
100//!
101//! #[no_mangle]
102//! pub extern "C" fn foo_new() -> Box<Foo> {
103//!     Box::new(Foo)
104//! }
105//!
106//! #[no_mangle]
107//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
108//! ```
109//!
110//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
111//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
112//! and expect things to work. `Box<T>` values will always be fully aligned,
113//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
114//! free the value with the global allocator. In general, the best practice
115//! is to only use `Box<T>` for pointers that originated from the global
116//! allocator.
117//!
118//! **Important.** At least at present, you should avoid using
119//! `Box<T>` types for functions that are defined in C but invoked
120//! from Rust. In those cases, you should directly mirror the C types
121//! as closely as possible. Using types like `Box<T>` where the C
122//! definition is just using `T*` can lead to undefined behavior, as
123//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
124//!
125//! # Considerations for unsafe code
126//!
127//! **Warning: This section is not normative and is subject to change, possibly
128//! being relaxed in the future! It is a simplified summary of the rules
129//! currently implemented in the compiler.**
130//!
131//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
132//! asserts uniqueness over its content. Using raw pointers derived from a box
133//! after that box has been mutated through, moved or borrowed as `&mut T`
134//! is not allowed. For more guidance on working with box from unsafe code, see
135//! [rust-lang/unsafe-code-guidelines#326][ucg#326].
136//!
137//!
138//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
139//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
140//! [dereferencing]: core::ops::Deref
141//! [`Box::<T>::from_raw(value)`]: Box::from_raw
142//! [`Global`]: crate::alloc::Global
143//! [`Layout`]: crate::alloc::Layout
144//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
145//! [valid]: ptr#safety
146
147use core::any::Any;
148use core::borrow;
149use core::cmp::Ordering;
150use core::convert::{From, TryFrom};
151
152// use core::error::Error;
153use core::fmt;
154use core::future::Future;
155use core::hash::{Hash, Hasher};
156#[cfg(not(no_global_oom_handling))]
157use core::iter::FromIterator;
158use core::iter::{FusedIterator, Iterator};
159use core::marker::Unpin;
160use core::mem::{self, MaybeUninit};
161use core::ops::{Deref, DerefMut};
162use core::pin::Pin;
163use core::ptr::{self, NonNull};
164use core::task::{Context, Poll};
165
166use super::alloc::{AllocError, Allocator, Global, Layout};
167use super::raw_vec::RawVec;
168use super::unique::Unique;
169#[cfg(not(no_global_oom_handling))]
170use super::vec::Vec;
171#[cfg(not(no_global_oom_handling))]
172use alloc_crate::alloc::handle_alloc_error;
173
174/// A pointer type for heap allocation.
175///
176/// See the [module-level documentation](../../std/boxed/index.html) for more.
177pub struct Box<T: ?Sized, A: Allocator = Global>(Unique<T>, A);
178
179// Safety: Box owns both T and A, so sending is safe if
180// sending is safe for T and A.
181unsafe impl<T: ?Sized, A: Allocator> Send for Box<T, A>
182where
183    T: Send,
184    A: Send,
185{
186}
187
188// Safety: Box owns both T and A, so sharing is safe if
189// sharing is safe for T and A.
190unsafe impl<T: ?Sized, A: Allocator> Sync for Box<T, A>
191where
192    T: Sync,
193    A: Sync,
194{
195}
196
197impl<T> Box<T> {
198    /// Allocates memory on the heap and then places `x` into it.
199    ///
200    /// This doesn't actually allocate if `T` is zero-sized.
201    ///
202    /// # Examples
203    ///
204    /// ```
205    /// let five = Box::new(5);
206    /// ```
207    #[cfg(all(not(no_global_oom_handling)))]
208    #[inline(always)]
209    #[must_use]
210    pub fn new(x: T) -> Self {
211        Self::new_in(x, Global)
212    }
213
214    /// Constructs a new box with uninitialized contents.
215    ///
216    /// # Examples
217    ///
218    /// ```
219    /// #![feature(new_uninit)]
220    ///
221    /// let mut five = Box::<u32>::new_uninit();
222    ///
223    /// let five = unsafe {
224    ///     // Deferred initialization:
225    ///     five.as_mut_ptr().write(5);
226    ///
227    ///     five.assume_init()
228    /// };
229    ///
230    /// assert_eq!(*five, 5)
231    /// ```
232    #[cfg(not(no_global_oom_handling))]
233    #[must_use]
234    #[inline(always)]
235    pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
236        Self::new_uninit_in(Global)
237    }
238
239    /// Constructs a new `Box` with uninitialized contents, with the memory
240    /// being filled with `0` bytes.
241    ///
242    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
243    /// of this method.
244    ///
245    /// # Examples
246    ///
247    /// ```
248    /// #![feature(new_uninit)]
249    ///
250    /// let zero = Box::<u32>::new_zeroed();
251    /// let zero = unsafe { zero.assume_init() };
252    ///
253    /// assert_eq!(*zero, 0)
254    /// ```
255    ///
256    /// [zeroed]: mem::MaybeUninit::zeroed
257    #[cfg(not(no_global_oom_handling))]
258    #[must_use]
259    #[inline(always)]
260    pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
261        Self::new_zeroed_in(Global)
262    }
263
264    /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
265    /// `x` will be pinned in memory and unable to be moved.
266    ///
267    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
268    /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
269    /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
270    /// construct a (pinned) `Box` in a different way than with [`Box::new`].
271    #[cfg(not(no_global_oom_handling))]
272    #[must_use]
273    #[inline(always)]
274    pub fn pin(x: T) -> Pin<Box<T>> {
275        Box::new(x).into()
276    }
277
278    /// Allocates memory on the heap then places `x` into it,
279    /// returning an error if the allocation fails
280    ///
281    /// This doesn't actually allocate if `T` is zero-sized.
282    ///
283    /// # Examples
284    ///
285    /// ```
286    /// #![feature(allocator_api)]
287    ///
288    /// let five = Box::try_new(5)?;
289    /// # Ok::<(), std::alloc::AllocError>(())
290    /// ```
291    #[inline(always)]
292    pub fn try_new(x: T) -> Result<Self, AllocError> {
293        Self::try_new_in(x, Global)
294    }
295
296    /// Constructs a new box with uninitialized contents on the heap,
297    /// returning an error if the allocation fails
298    ///
299    /// # Examples
300    ///
301    /// ```
302    /// #![feature(allocator_api, new_uninit)]
303    ///
304    /// let mut five = Box::<u32>::try_new_uninit()?;
305    ///
306    /// let five = unsafe {
307    ///     // Deferred initialization:
308    ///     five.as_mut_ptr().write(5);
309    ///
310    ///     five.assume_init()
311    /// };
312    ///
313    /// assert_eq!(*five, 5);
314    /// # Ok::<(), std::alloc::AllocError>(())
315    /// ```
316    #[inline(always)]
317    pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
318        Box::try_new_uninit_in(Global)
319    }
320
321    /// Constructs a new `Box` with uninitialized contents, with the memory
322    /// being filled with `0` bytes on the heap
323    ///
324    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
325    /// of this method.
326    ///
327    /// # Examples
328    ///
329    /// ```
330    /// #![feature(allocator_api, new_uninit)]
331    ///
332    /// let zero = Box::<u32>::try_new_zeroed()?;
333    /// let zero = unsafe { zero.assume_init() };
334    ///
335    /// assert_eq!(*zero, 0);
336    /// # Ok::<(), std::alloc::AllocError>(())
337    /// ```
338    ///
339    /// [zeroed]: mem::MaybeUninit::zeroed
340    #[inline(always)]
341    pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
342        Box::try_new_zeroed_in(Global)
343    }
344}
345
346impl<T, A: Allocator> Box<T, A> {
347    /// Allocates memory in the given allocator then places `x` into it.
348    ///
349    /// This doesn't actually allocate if `T` is zero-sized.
350    ///
351    /// # Examples
352    ///
353    /// ```
354    /// #![feature(allocator_api)]
355    ///
356    /// use std::alloc::System;
357    ///
358    /// let five = Box::new_in(5, System);
359    /// ```
360    #[cfg(not(no_global_oom_handling))]
361    #[must_use]
362    #[inline(always)]
363    pub fn new_in(x: T, alloc: A) -> Self
364    where
365        A: Allocator,
366    {
367        let mut boxed = Self::new_uninit_in(alloc);
368        unsafe {
369            boxed.as_mut_ptr().write(x);
370            boxed.assume_init()
371        }
372    }
373
374    /// Allocates memory in the given allocator then places `x` into it,
375    /// returning an error if the allocation fails
376    ///
377    /// This doesn't actually allocate if `T` is zero-sized.
378    ///
379    /// # Examples
380    ///
381    /// ```
382    /// #![feature(allocator_api)]
383    ///
384    /// use std::alloc::System;
385    ///
386    /// let five = Box::try_new_in(5, System)?;
387    /// # Ok::<(), std::alloc::AllocError>(())
388    /// ```
389    #[inline(always)]
390    pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
391    where
392        A: Allocator,
393    {
394        let mut boxed = Self::try_new_uninit_in(alloc)?;
395        unsafe {
396            boxed.as_mut_ptr().write(x);
397            Ok(boxed.assume_init())
398        }
399    }
400
401    /// Constructs a new box with uninitialized contents in the provided allocator.
402    ///
403    /// # Examples
404    ///
405    /// ```
406    /// #![feature(allocator_api, new_uninit)]
407    ///
408    /// use std::alloc::System;
409    ///
410    /// let mut five = Box::<u32, _>::new_uninit_in(System);
411    ///
412    /// let five = unsafe {
413    ///     // Deferred initialization:
414    ///     five.as_mut_ptr().write(5);
415    ///
416    ///     five.assume_init()
417    /// };
418    ///
419    /// assert_eq!(*five, 5)
420    /// ```
421    #[cfg(not(no_global_oom_handling))]
422    #[must_use]
423    // #[unstable(feature = "new_uninit", issue = "63291")]
424    #[inline(always)]
425    pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
426    where
427        A: Allocator,
428    {
429        let layout = Layout::new::<mem::MaybeUninit<T>>();
430        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
431        // That would make code size bigger.
432        match Box::try_new_uninit_in(alloc) {
433            Ok(m) => m,
434            Err(_) => handle_alloc_error(layout),
435        }
436    }
437
438    /// Constructs a new box with uninitialized contents in the provided allocator,
439    /// returning an error if the allocation fails
440    ///
441    /// # Examples
442    ///
443    /// ```
444    /// #![feature(allocator_api, new_uninit)]
445    ///
446    /// use std::alloc::System;
447    ///
448    /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
449    ///
450    /// let five = unsafe {
451    ///     // Deferred initialization:
452    ///     five.as_mut_ptr().write(5);
453    ///
454    ///     five.assume_init()
455    /// };
456    ///
457    /// assert_eq!(*five, 5);
458    /// # Ok::<(), std::alloc::AllocError>(())
459    /// ```
460    #[inline(always)]
461    pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
462    where
463        A: Allocator,
464    {
465        let ptr = if mem::size_of::<T>() == 0 {
466            NonNull::dangling()
467        } else {
468            let layout = Layout::new::<mem::MaybeUninit<T>>();
469            alloc.allocate(layout)?.cast()
470        };
471
472        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
473    }
474
475    /// Constructs a new `Box` with uninitialized contents, with the memory
476    /// being filled with `0` bytes in the provided allocator.
477    ///
478    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
479    /// of this method.
480    ///
481    /// # Examples
482    ///
483    /// ```
484    /// #![feature(allocator_api, new_uninit)]
485    ///
486    /// use std::alloc::System;
487    ///
488    /// let zero = Box::<u32, _>::new_zeroed_in(System);
489    /// let zero = unsafe { zero.assume_init() };
490    ///
491    /// assert_eq!(*zero, 0)
492    /// ```
493    ///
494    /// [zeroed]: mem::MaybeUninit::zeroed
495    #[cfg(not(no_global_oom_handling))]
496    // #[unstable(feature = "new_uninit", issue = "63291")]
497    #[must_use]
498    #[inline(always)]
499    pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
500    where
501        A: Allocator,
502    {
503        let layout = Layout::new::<mem::MaybeUninit<T>>();
504        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
505        // That would make code size bigger.
506        match Box::try_new_zeroed_in(alloc) {
507            Ok(m) => m,
508            Err(_) => handle_alloc_error(layout),
509        }
510    }
511
512    /// Constructs a new `Box` with uninitialized contents, with the memory
513    /// being filled with `0` bytes in the provided allocator,
514    /// returning an error if the allocation fails,
515    ///
516    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
517    /// of this method.
518    ///
519    /// # Examples
520    ///
521    /// ```
522    /// #![feature(allocator_api, new_uninit)]
523    ///
524    /// use std::alloc::System;
525    ///
526    /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
527    /// let zero = unsafe { zero.assume_init() };
528    ///
529    /// assert_eq!(*zero, 0);
530    /// # Ok::<(), std::alloc::AllocError>(())
531    /// ```
532    ///
533    /// [zeroed]: mem::MaybeUninit::zeroed
534    #[inline(always)]
535    pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
536    where
537        A: Allocator,
538    {
539        let ptr = if mem::size_of::<T>() == 0 {
540            NonNull::dangling()
541        } else {
542            let layout = Layout::new::<mem::MaybeUninit<T>>();
543            alloc.allocate_zeroed(layout)?.cast()
544        };
545        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
546    }
547
548    /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
549    /// `x` will be pinned in memory and unable to be moved.
550    ///
551    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
552    /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
553    /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
554    /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
555    #[cfg(not(no_global_oom_handling))]
556    #[must_use]
557    #[inline(always)]
558    pub fn pin_in(x: T, alloc: A) -> Pin<Self>
559    where
560        A: 'static + Allocator,
561    {
562        Self::into_pin(Self::new_in(x, alloc))
563    }
564
565    /// Converts a `Box<T>` into a `Box<[T]>`
566    ///
567    /// This conversion does not allocate on the heap and happens in place.
568    #[inline(always)]
569    pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
570        let (raw, alloc) = Box::into_raw_with_allocator(boxed);
571        unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
572    }
573
574    /// Consumes the `Box`, returning the wrapped value.
575    ///
576    /// # Examples
577    ///
578    /// ```
579    /// #![feature(box_into_inner)]
580    ///
581    /// let c = Box::new(5);
582    ///
583    /// assert_eq!(Box::into_inner(c), 5);
584    /// ```
585    #[inline(always)]
586    pub fn into_inner(boxed: Self) -> T {
587        // Override our default `Drop` implementation.
588        // Though the default `Drop` implementation drops the both the pointer and the allocator,
589        // here we only want to drop the allocator.
590        let boxed = mem::ManuallyDrop::new(boxed);
591        let alloc = unsafe { ptr::read(&boxed.1) };
592
593        let ptr = boxed.0;
594        let unboxed = unsafe { ptr.as_ptr().read() };
595        unsafe { alloc.deallocate(ptr.as_non_null_ptr().cast(), Layout::new::<T>()) };
596
597        unboxed
598    }
599}
600
601impl<T> Box<[T]> {
602    /// Constructs a new boxed slice with uninitialized contents.
603    ///
604    /// # Examples
605    ///
606    /// ```
607    /// #![feature(new_uninit)]
608    ///
609    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
610    ///
611    /// let values = unsafe {
612    ///     // Deferred initialization:
613    ///     values[0].as_mut_ptr().write(1);
614    ///     values[1].as_mut_ptr().write(2);
615    ///     values[2].as_mut_ptr().write(3);
616    ///
617    ///     values.assume_init()
618    /// };
619    ///
620    /// assert_eq!(*values, [1, 2, 3])
621    /// ```
622    #[cfg(not(no_global_oom_handling))]
623    #[must_use]
624    #[inline(always)]
625    pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
626        unsafe { RawVec::with_capacity(len).into_box(len) }
627    }
628
629    /// Constructs a new boxed slice with uninitialized contents, with the memory
630    /// being filled with `0` bytes.
631    ///
632    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
633    /// of this method.
634    ///
635    /// # Examples
636    ///
637    /// ```
638    /// #![feature(new_uninit)]
639    ///
640    /// let values = Box::<[u32]>::new_zeroed_slice(3);
641    /// let values = unsafe { values.assume_init() };
642    ///
643    /// assert_eq!(*values, [0, 0, 0])
644    /// ```
645    ///
646    /// [zeroed]: mem::MaybeUninit::zeroed
647    #[cfg(not(no_global_oom_handling))]
648    #[must_use]
649    #[inline(always)]
650    pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
651        unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
652    }
653
654    /// Constructs a new boxed slice with uninitialized contents. Returns an error if
655    /// the allocation fails
656    ///
657    /// # Examples
658    ///
659    /// ```
660    /// #![feature(allocator_api, new_uninit)]
661    ///
662    /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
663    /// let values = unsafe {
664    ///     // Deferred initialization:
665    ///     values[0].as_mut_ptr().write(1);
666    ///     values[1].as_mut_ptr().write(2);
667    ///     values[2].as_mut_ptr().write(3);
668    ///     values.assume_init()
669    /// };
670    ///
671    /// assert_eq!(*values, [1, 2, 3]);
672    /// # Ok::<(), std::alloc::AllocError>(())
673    /// ```
674    #[inline(always)]
675    pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
676        Self::try_new_uninit_slice_in(len, Global)
677    }
678
679    /// Constructs a new boxed slice with uninitialized contents, with the memory
680    /// being filled with `0` bytes. Returns an error if the allocation fails
681    ///
682    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
683    /// of this method.
684    ///
685    /// # Examples
686    ///
687    /// ```
688    /// #![feature(allocator_api, new_uninit)]
689    ///
690    /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
691    /// let values = unsafe { values.assume_init() };
692    ///
693    /// assert_eq!(*values, [0, 0, 0]);
694    /// # Ok::<(), std::alloc::AllocError>(())
695    /// ```
696    ///
697    /// [zeroed]: mem::MaybeUninit::zeroed
698    #[inline(always)]
699    pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
700        Self::try_new_zeroed_slice_in(len, Global)
701    }
702}
703
704impl<T, A: Allocator> Box<[T], A> {
705    /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
706    ///
707    /// # Examples
708    ///
709    /// ```
710    /// #![feature(allocator_api, new_uninit)]
711    ///
712    /// use std::alloc::System;
713    ///
714    /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
715    ///
716    /// let values = unsafe {
717    ///     // Deferred initialization:
718    ///     values[0].as_mut_ptr().write(1);
719    ///     values[1].as_mut_ptr().write(2);
720    ///     values[2].as_mut_ptr().write(3);
721    ///
722    ///     values.assume_init()
723    /// };
724    ///
725    /// assert_eq!(*values, [1, 2, 3])
726    /// ```
727    #[cfg(not(no_global_oom_handling))]
728    #[must_use]
729    #[inline(always)]
730    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
731        unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
732    }
733
734    /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
735    /// with the memory being filled with `0` bytes.
736    ///
737    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
738    /// of this method.
739    ///
740    /// # Examples
741    ///
742    /// ```
743    /// #![feature(allocator_api, new_uninit)]
744    ///
745    /// use std::alloc::System;
746    ///
747    /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
748    /// let values = unsafe { values.assume_init() };
749    ///
750    /// assert_eq!(*values, [0, 0, 0])
751    /// ```
752    ///
753    /// [zeroed]: mem::MaybeUninit::zeroed
754    #[cfg(not(no_global_oom_handling))]
755    #[must_use]
756    #[inline(always)]
757    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
758        unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
759    }
760
761    /// Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if
762    /// the allocation fails.
763    ///
764    /// # Examples
765    ///
766    /// ```
767    /// #![feature(allocator_api, new_uninit)]
768    ///
769    /// use std::alloc::System;
770    ///
771    /// let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?;
772    /// let values = unsafe {
773    ///     // Deferred initialization:
774    ///     values[0].as_mut_ptr().write(1);
775    ///     values[1].as_mut_ptr().write(2);
776    ///     values[2].as_mut_ptr().write(3);
777    ///     values.assume_init()
778    /// };
779    ///
780    /// assert_eq!(*values, [1, 2, 3]);
781    /// # Ok::<(), std::alloc::AllocError>(())
782    /// ```
783    #[inline]
784    pub fn try_new_uninit_slice_in(
785        len: usize,
786        alloc: A,
787    ) -> Result<Box<[MaybeUninit<T>], A>, AllocError> {
788        let ptr = if mem::size_of::<T>() == 0 || len == 0 {
789            NonNull::dangling()
790        } else {
791            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
792                Ok(l) => l,
793                Err(_) => return Err(AllocError),
794            };
795            alloc.allocate(layout)?.cast()
796        };
797        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
798    }
799
800    /// Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory
801    /// being filled with `0` bytes. Returns an error if the allocation fails.
802    ///
803    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
804    /// of this method.
805    ///
806    /// # Examples
807    ///
808    /// ```
809    /// #![feature(allocator_api, new_uninit)]
810    ///
811    /// use std::alloc::System;
812    ///
813    /// let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?;
814    /// let values = unsafe { values.assume_init() };
815    ///
816    /// assert_eq!(*values, [0, 0, 0]);
817    /// # Ok::<(), std::alloc::AllocError>(())
818    /// ```
819    ///
820    /// [zeroed]: mem::MaybeUninit::zeroed
821    #[inline]
822    pub fn try_new_zeroed_slice_in(
823        len: usize,
824        alloc: A,
825    ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> {
826        let ptr = if mem::size_of::<T>() == 0 || len == 0 {
827            NonNull::dangling()
828        } else {
829            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
830                Ok(l) => l,
831                Err(_) => return Err(AllocError),
832            };
833            alloc.allocate_zeroed(layout)?.cast()
834        };
835        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
836    }
837
838    /// Converts `self` into a vector without clones or allocation.
839    ///
840    /// The resulting vector can be converted back into a box via
841    /// `Vec<T>`'s `into_boxed_slice` method.
842    ///
843    /// # Examples
844    ///
845    /// ```
846    /// let s: Box<[i32]> = Box::new([10, 40, 30]);
847    /// let x = s.into_vec();
848    /// // `s` cannot be used anymore because it has been converted into `x`.
849    ///
850    /// assert_eq!(x, vec![10, 40, 30]);
851    /// ```
852    #[inline]
853    pub fn into_vec(self) -> Vec<T, A>
854    where
855        A: Allocator,
856    {
857        unsafe {
858            let len = self.len();
859            let (b, alloc) = Box::into_raw_with_allocator(self);
860            Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
861        }
862    }
863}
864
865impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
866    /// Converts to `Box<T, A>`.
867    ///
868    /// # Safety
869    ///
870    /// As with [`MaybeUninit::assume_init`],
871    /// it is up to the caller to guarantee that the value
872    /// really is in an initialized state.
873    /// Calling this when the content is not yet fully initialized
874    /// causes immediate undefined behavior.
875    ///
876    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
877    ///
878    /// # Examples
879    ///
880    /// ```
881    /// #![feature(new_uninit)]
882    ///
883    /// let mut five = Box::<u32>::new_uninit();
884    ///
885    /// let five: Box<u32> = unsafe {
886    ///     // Deferred initialization:
887    ///     five.as_mut_ptr().write(5);
888    ///
889    ///     five.assume_init()
890    /// };
891    ///
892    /// assert_eq!(*five, 5)
893    /// ```
894    #[inline(always)]
895    pub unsafe fn assume_init(self) -> Box<T, A> {
896        let (raw, alloc) = Self::into_raw_with_allocator(self);
897        unsafe { Box::<T, A>::from_raw_in(raw as *mut T, alloc) }
898    }
899
900    /// Writes the value and converts to `Box<T, A>`.
901    ///
902    /// This method converts the box similarly to [`Box::assume_init`] but
903    /// writes `value` into it before conversion thus guaranteeing safety.
904    /// In some scenarios use of this method may improve performance because
905    /// the compiler may be able to optimize copying from stack.
906    ///
907    /// # Examples
908    ///
909    /// ```
910    /// #![feature(new_uninit)]
911    ///
912    /// let big_box = Box::<[usize; 1024]>::new_uninit();
913    ///
914    /// let mut array = [0; 1024];
915    /// for (i, place) in array.iter_mut().enumerate() {
916    ///     *place = i;
917    /// }
918    ///
919    /// // The optimizer may be able to elide this copy, so previous code writes
920    /// // to heap directly.
921    /// let big_box = Box::write(big_box, array);
922    ///
923    /// for (i, x) in big_box.iter().enumerate() {
924    ///     assert_eq!(*x, i);
925    /// }
926    /// ```
927    #[inline(always)]
928    pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
929        unsafe {
930            (*boxed).write(value);
931            boxed.assume_init()
932        }
933    }
934}
935
936impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
937    /// Converts to `Box<[T], A>`.
938    ///
939    /// # Safety
940    ///
941    /// As with [`MaybeUninit::assume_init`],
942    /// it is up to the caller to guarantee that the values
943    /// really are in an initialized state.
944    /// Calling this when the content is not yet fully initialized
945    /// causes immediate undefined behavior.
946    ///
947    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
948    ///
949    /// # Examples
950    ///
951    /// ```
952    /// #![feature(new_uninit)]
953    ///
954    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
955    ///
956    /// let values = unsafe {
957    ///     // Deferred initialization:
958    ///     values[0].as_mut_ptr().write(1);
959    ///     values[1].as_mut_ptr().write(2);
960    ///     values[2].as_mut_ptr().write(3);
961    ///
962    ///     values.assume_init()
963    /// };
964    ///
965    /// assert_eq!(*values, [1, 2, 3])
966    /// ```
967    #[inline(always)]
968    pub unsafe fn assume_init(self) -> Box<[T], A> {
969        let (raw, alloc) = Self::into_raw_with_allocator(self);
970        unsafe { Box::<[T], A>::from_raw_in(raw as *mut [T], alloc) }
971    }
972}
973
974impl<T: ?Sized> Box<T> {
975    /// Constructs a box from a raw pointer.
976    ///
977    /// After calling this function, the raw pointer is owned by the
978    /// resulting `Box`. Specifically, the `Box` destructor will call
979    /// the destructor of `T` and free the allocated memory. For this
980    /// to be safe, the memory must have been allocated in accordance
981    /// with the [memory layout] used by `Box` .
982    ///
983    /// # Safety
984    ///
985    /// This function is unsafe because improper use may lead to
986    /// memory problems. For example, a double-free may occur if the
987    /// function is called twice on the same raw pointer.
988    ///
989    /// The safety conditions are described in the [memory layout] section.
990    ///
991    /// # Examples
992    ///
993    /// Recreate a `Box` which was previously converted to a raw pointer
994    /// using [`Box::into_raw`]:
995    /// ```
996    /// let x = Box::new(5);
997    /// let ptr = Box::into_raw(x);
998    /// let x = unsafe { Box::from_raw(ptr) };
999    /// ```
1000    /// Manually create a `Box` from scratch by using the global allocator:
1001    /// ```
1002    /// use std::alloc::{alloc, Layout};
1003    ///
1004    /// unsafe {
1005    ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
1006    ///     // In general .write is required to avoid attempting to destruct
1007    ///     // the (uninitialized) previous contents of `ptr`, though for this
1008    ///     // simple example `*ptr = 5` would have worked as well.
1009    ///     ptr.write(5);
1010    ///     let x = Box::from_raw(ptr);
1011    /// }
1012    /// ```
1013    ///
1014    /// [memory layout]: self#memory-layout
1015    /// [`Layout`]: crate::Layout
1016    #[must_use = "call `drop(from_raw(ptr))` if you intend to drop the `Box`"]
1017    #[inline(always)]
1018    pub unsafe fn from_raw(raw: *mut T) -> Self {
1019        unsafe { Self::from_raw_in(raw, Global) }
1020    }
1021}
1022
1023impl<T: ?Sized, A: Allocator> Box<T, A> {
1024    /// Constructs a box from a raw pointer in the given allocator.
1025    ///
1026    /// After calling this function, the raw pointer is owned by the
1027    /// resulting `Box`. Specifically, the `Box` destructor will call
1028    /// the destructor of `T` and free the allocated memory. For this
1029    /// to be safe, the memory must have been allocated in accordance
1030    /// with the [memory layout] used by `Box` .
1031    ///
1032    /// # Safety
1033    ///
1034    /// This function is unsafe because improper use may lead to
1035    /// memory problems. For example, a double-free may occur if the
1036    /// function is called twice on the same raw pointer.
1037    ///
1038    ///
1039    /// # Examples
1040    ///
1041    /// Recreate a `Box` which was previously converted to a raw pointer
1042    /// using [`Box::into_raw_with_allocator`]:
1043    /// ```
1044    /// use std::alloc::System;
1045    /// # use allocator_api2::boxed::Box;
1046    ///
1047    /// let x = Box::new_in(5, System);
1048    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1049    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1050    /// ```
1051    /// Manually create a `Box` from scratch by using the system allocator:
1052    /// ```
1053    /// use allocator_api2::alloc::{Allocator, Layout, System};
1054    /// # use allocator_api2::boxed::Box;
1055    ///
1056    /// unsafe {
1057    ///     let ptr = System.allocate(Layout::new::<i32>())?.as_ptr().cast::<i32>();
1058    ///     // In general .write is required to avoid attempting to destruct
1059    ///     // the (uninitialized) previous contents of `ptr`, though for this
1060    ///     // simple example `*ptr = 5` would have worked as well.
1061    ///     ptr.write(5);
1062    ///     let x = Box::from_raw_in(ptr, System);
1063    /// }
1064    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
1065    /// ```
1066    ///
1067    /// [memory layout]: self#memory-layout
1068    /// [`Layout`]: crate::Layout
1069    #[inline(always)]
1070    pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
1071        Box(unsafe { Unique::new_unchecked(raw) }, alloc)
1072    }
1073
1074    /// Consumes the `Box`, returning a wrapped raw pointer.
1075    ///
1076    /// The pointer will be properly aligned and non-null.
1077    ///
1078    /// After calling this function, the caller is responsible for the
1079    /// memory previously managed by the `Box`. In particular, the
1080    /// caller should properly destroy `T` and release the memory, taking
1081    /// into account the [memory layout] used by `Box`. The easiest way to
1082    /// do this is to convert the raw pointer back into a `Box` with the
1083    /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
1084    /// the cleanup.
1085    ///
1086    /// Note: this is an associated function, which means that you have
1087    /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
1088    /// is so that there is no conflict with a method on the inner type.
1089    ///
1090    /// # Examples
1091    /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
1092    /// for automatic cleanup:
1093    /// ```
1094    /// let x = Box::new(String::from("Hello"));
1095    /// let ptr = Box::into_raw(x);
1096    /// let x = unsafe { Box::from_raw(ptr) };
1097    /// ```
1098    /// Manual cleanup by explicitly running the destructor and deallocating
1099    /// the memory:
1100    /// ```
1101    /// use std::alloc::{dealloc, Layout};
1102    /// use std::ptr;
1103    ///
1104    /// let x = Box::new(String::from("Hello"));
1105    /// let p = Box::into_raw(x);
1106    /// unsafe {
1107    ///     ptr::drop_in_place(p);
1108    ///     dealloc(p as *mut u8, Layout::new::<String>());
1109    /// }
1110    /// ```
1111    ///
1112    /// [memory layout]: self#memory-layout
1113    #[inline(always)]
1114    pub fn into_raw(b: Self) -> *mut T {
1115        Self::into_raw_with_allocator(b).0
1116    }
1117
1118    /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
1119    ///
1120    /// The pointer will be properly aligned and non-null.
1121    ///
1122    /// After calling this function, the caller is responsible for the
1123    /// memory previously managed by the `Box`. In particular, the
1124    /// caller should properly destroy `T` and release the memory, taking
1125    /// into account the [memory layout] used by `Box`. The easiest way to
1126    /// do this is to convert the raw pointer back into a `Box` with the
1127    /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
1128    /// the cleanup.
1129    ///
1130    /// Note: this is an associated function, which means that you have
1131    /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
1132    /// is so that there is no conflict with a method on the inner type.
1133    ///
1134    /// # Examples
1135    /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
1136    /// for automatic cleanup:
1137    /// ```
1138    /// #![feature(allocator_api)]
1139    ///
1140    /// use std::alloc::System;
1141    ///
1142    /// let x = Box::new_in(String::from("Hello"), System);
1143    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1144    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1145    /// ```
1146    /// Manual cleanup by explicitly running the destructor and deallocating
1147    /// the memory:
1148    /// ```
1149    /// #![feature(allocator_api)]
1150    ///
1151    /// use std::alloc::{Allocator, Layout, System};
1152    /// use std::ptr::{self, NonNull};
1153    ///
1154    /// let x = Box::new_in(String::from("Hello"), System);
1155    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1156    /// unsafe {
1157    ///     ptr::drop_in_place(ptr);
1158    ///     let non_null = NonNull::new_unchecked(ptr);
1159    ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
1160    /// }
1161    /// ```
1162    ///
1163    /// [memory layout]: self#memory-layout
1164    #[inline(always)]
1165    pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
1166        let (leaked, alloc) = Box::into_non_null(b);
1167        (leaked.as_ptr(), alloc)
1168    }
1169
1170    #[inline(always)]
1171    pub fn into_non_null(b: Self) -> (NonNull<T>, A) {
1172        // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
1173        // raw pointer for the type system. Turning it directly into a raw pointer would not be
1174        // recognized as "releasing" the unique pointer to permit aliased raw accesses,
1175        // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
1176        // behaves correctly.
1177        let alloc = unsafe { ptr::read(&b.1) };
1178        (NonNull::from(Box::leak(b)), alloc)
1179    }
1180
1181    /// Returns a reference to the underlying allocator.
1182    ///
1183    /// Note: this is an associated function, which means that you have
1184    /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
1185    /// is so that there is no conflict with a method on the inner type.
1186    #[inline(always)]
1187    pub const fn allocator(b: &Self) -> &A {
1188        &b.1
1189    }
1190
1191    /// Consumes and leaks the `Box`, returning a mutable reference,
1192    /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
1193    /// `'a`. If the type has only static references, or none at all, then this
1194    /// may be chosen to be `'static`.
1195    ///
1196    /// This function is mainly useful for data that lives for the remainder of
1197    /// the program's life. Dropping the returned reference will cause a memory
1198    /// leak. If this is not acceptable, the reference should first be wrapped
1199    /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
1200    /// then be dropped which will properly destroy `T` and release the
1201    /// allocated memory.
1202    ///
1203    /// Note: this is an associated function, which means that you have
1204    /// to call it as `Box::leak(b)` instead of `b.leak()`. This
1205    /// is so that there is no conflict with a method on the inner type.
1206    ///
1207    /// # Examples
1208    ///
1209    /// Simple usage:
1210    ///
1211    /// ```
1212    /// let x = Box::new(41);
1213    /// let static_ref: &'static mut usize = Box::leak(x);
1214    /// *static_ref += 1;
1215    /// assert_eq!(*static_ref, 42);
1216    /// ```
1217    ///
1218    /// Unsized data:
1219    ///
1220    /// ```
1221    /// let x = vec![1, 2, 3].into_boxed_slice();
1222    /// let static_ref = Box::leak(x);
1223    /// static_ref[0] = 4;
1224    /// assert_eq!(*static_ref, [4, 2, 3]);
1225    /// ```
1226    #[inline(always)]
1227    pub fn leak<'a>(b: Self) -> &'a mut T
1228    where
1229        A: 'a,
1230    {
1231        unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
1232    }
1233
1234    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1235    /// `*boxed` will be pinned in memory and unable to be moved.
1236    ///
1237    /// This conversion does not allocate on the heap and happens in place.
1238    ///
1239    /// This is also available via [`From`].
1240    ///
1241    /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
1242    /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1243    /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
1244    /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1245    ///
1246    /// # Notes
1247    ///
1248    /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
1249    /// as it'll introduce an ambiguity when calling `Pin::from`.
1250    /// A demonstration of such a poor impl is shown below.
1251    ///
1252    /// ```compile_fail
1253    /// # use std::pin::Pin;
1254    /// struct Foo; // A type defined in this crate.
1255    /// impl From<Box<()>> for Pin<Foo> {
1256    ///     fn from(_: Box<()>) -> Pin<Foo> {
1257    ///         Pin::new(Foo)
1258    ///     }
1259    /// }
1260    ///
1261    /// let foo = Box::new(());
1262    /// let bar = Pin::from(foo);
1263    /// ```
1264    #[inline(always)]
1265    pub fn into_pin(boxed: Self) -> Pin<Self>
1266    where
1267        A: 'static,
1268    {
1269        // It's not possible to move or replace the insides of a `Pin<Box<T>>`
1270        // when `T: !Unpin`, so it's safe to pin it directly without any
1271        // additional requirements.
1272        unsafe { Pin::new_unchecked(boxed) }
1273    }
1274}
1275
1276impl<T: ?Sized, A: Allocator> Drop for Box<T, A> {
1277    #[inline(always)]
1278    fn drop(&mut self) {
1279        let layout = Layout::for_value::<T>(&**self);
1280        unsafe {
1281            ptr::drop_in_place(self.0.as_mut());
1282            self.1.deallocate(self.0.as_non_null_ptr().cast(), layout);
1283        }
1284    }
1285}
1286
1287#[cfg(not(no_global_oom_handling))]
1288impl<T: Default> Default for Box<T> {
1289    /// Creates a `Box<T>`, with the `Default` value for T.
1290    #[inline(always)]
1291    fn default() -> Self {
1292        Box::new(T::default())
1293    }
1294}
1295
1296impl<T, A: Allocator + Default> Default for Box<[T], A> {
1297    #[inline(always)]
1298    fn default() -> Self {
1299        let ptr: NonNull<[T]> = NonNull::<[T; 0]>::dangling();
1300        Box(unsafe { Unique::new_unchecked(ptr.as_ptr()) }, A::default())
1301    }
1302}
1303
1304impl<A: Allocator + Default> Default for Box<str, A> {
1305    #[inline(always)]
1306    fn default() -> Self {
1307        // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
1308        let ptr: Unique<str> = unsafe {
1309            let bytes: NonNull<[u8]> = NonNull::<[u8; 0]>::dangling();
1310            Unique::new_unchecked(bytes.as_ptr() as *mut str)
1311        };
1312        Box(ptr, A::default())
1313    }
1314}
1315
1316#[cfg(not(no_global_oom_handling))]
1317impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
1318    /// Returns a new box with a `clone()` of this box's contents.
1319    ///
1320    /// # Examples
1321    ///
1322    /// ```
1323    /// let x = Box::new(5);
1324    /// let y = x.clone();
1325    ///
1326    /// // The value is the same
1327    /// assert_eq!(x, y);
1328    ///
1329    /// // But they are unique objects
1330    /// assert_ne!(&*x as *const i32, &*y as *const i32);
1331    /// ```
1332    #[inline(always)]
1333    fn clone(&self) -> Self {
1334        // Pre-allocate memory to allow writing the cloned value directly.
1335        let mut boxed = Self::new_uninit_in(self.1.clone());
1336        unsafe {
1337            boxed.write((**self).clone());
1338            boxed.assume_init()
1339        }
1340    }
1341
1342    /// Copies `source`'s contents into `self` without creating a new allocation.
1343    ///
1344    /// # Examples
1345    ///
1346    /// ```
1347    /// let x = Box::new(5);
1348    /// let mut y = Box::new(10);
1349    /// let yp: *const i32 = &*y;
1350    ///
1351    /// y.clone_from(&x);
1352    ///
1353    /// // The value is the same
1354    /// assert_eq!(x, y);
1355    ///
1356    /// // And no allocation occurred
1357    /// assert_eq!(yp, &*y);
1358    /// ```
1359    #[inline(always)]
1360    fn clone_from(&mut self, source: &Self) {
1361        (**self).clone_from(&(**source));
1362    }
1363}
1364
1365#[cfg(not(no_global_oom_handling))]
1366impl Clone for Box<str> {
1367    #[inline(always)]
1368    fn clone(&self) -> Self {
1369        // this makes a copy of the data
1370        let buf: Box<[u8]> = self.as_bytes().into();
1371        unsafe { Box::from_raw(Box::into_raw(buf) as *mut str) }
1372    }
1373}
1374
1375impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
1376    #[inline(always)]
1377    fn eq(&self, other: &Self) -> bool {
1378        PartialEq::eq(&**self, &**other)
1379    }
1380    #[inline(always)]
1381    fn ne(&self, other: &Self) -> bool {
1382        PartialEq::ne(&**self, &**other)
1383    }
1384}
1385
1386impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
1387    #[inline(always)]
1388    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1389        PartialOrd::partial_cmp(&**self, &**other)
1390    }
1391    #[inline(always)]
1392    fn lt(&self, other: &Self) -> bool {
1393        PartialOrd::lt(&**self, &**other)
1394    }
1395    #[inline(always)]
1396    fn le(&self, other: &Self) -> bool {
1397        PartialOrd::le(&**self, &**other)
1398    }
1399    #[inline(always)]
1400    fn ge(&self, other: &Self) -> bool {
1401        PartialOrd::ge(&**self, &**other)
1402    }
1403    #[inline(always)]
1404    fn gt(&self, other: &Self) -> bool {
1405        PartialOrd::gt(&**self, &**other)
1406    }
1407}
1408
1409impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
1410    #[inline(always)]
1411    fn cmp(&self, other: &Self) -> Ordering {
1412        Ord::cmp(&**self, &**other)
1413    }
1414}
1415
1416impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
1417
1418impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
1419    #[inline(always)]
1420    fn hash<H: Hasher>(&self, state: &mut H) {
1421        (**self).hash(state);
1422    }
1423}
1424
1425impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
1426    #[inline(always)]
1427    fn finish(&self) -> u64 {
1428        (**self).finish()
1429    }
1430    #[inline(always)]
1431    fn write(&mut self, bytes: &[u8]) {
1432        (**self).write(bytes)
1433    }
1434    #[inline(always)]
1435    fn write_u8(&mut self, i: u8) {
1436        (**self).write_u8(i)
1437    }
1438    #[inline(always)]
1439    fn write_u16(&mut self, i: u16) {
1440        (**self).write_u16(i)
1441    }
1442    #[inline(always)]
1443    fn write_u32(&mut self, i: u32) {
1444        (**self).write_u32(i)
1445    }
1446    #[inline(always)]
1447    fn write_u64(&mut self, i: u64) {
1448        (**self).write_u64(i)
1449    }
1450    #[inline(always)]
1451    fn write_u128(&mut self, i: u128) {
1452        (**self).write_u128(i)
1453    }
1454    #[inline(always)]
1455    fn write_usize(&mut self, i: usize) {
1456        (**self).write_usize(i)
1457    }
1458    #[inline(always)]
1459    fn write_i8(&mut self, i: i8) {
1460        (**self).write_i8(i)
1461    }
1462    #[inline(always)]
1463    fn write_i16(&mut self, i: i16) {
1464        (**self).write_i16(i)
1465    }
1466    #[inline(always)]
1467    fn write_i32(&mut self, i: i32) {
1468        (**self).write_i32(i)
1469    }
1470    #[inline(always)]
1471    fn write_i64(&mut self, i: i64) {
1472        (**self).write_i64(i)
1473    }
1474    #[inline(always)]
1475    fn write_i128(&mut self, i: i128) {
1476        (**self).write_i128(i)
1477    }
1478    #[inline(always)]
1479    fn write_isize(&mut self, i: isize) {
1480        (**self).write_isize(i)
1481    }
1482}
1483
1484#[cfg(not(no_global_oom_handling))]
1485impl<T> From<T> for Box<T> {
1486    /// Converts a `T` into a `Box<T>`
1487    ///
1488    /// The conversion allocates on the heap and moves `t`
1489    /// from the stack into it.
1490    ///
1491    /// # Examples
1492    ///
1493    /// ```rust
1494    /// let x = 5;
1495    /// let boxed = Box::new(5);
1496    ///
1497    /// assert_eq!(Box::from(x), boxed);
1498    /// ```
1499    #[inline(always)]
1500    fn from(t: T) -> Self {
1501        Box::new(t)
1502    }
1503}
1504
1505impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
1506where
1507    A: 'static,
1508{
1509    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1510    /// `*boxed` will be pinned in memory and unable to be moved.
1511    ///
1512    /// This conversion does not allocate on the heap and happens in place.
1513    ///
1514    /// This is also available via [`Box::into_pin`].
1515    ///
1516    /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
1517    /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1518    /// This `From` implementation is useful if you already have a `Box<T>`, or you are
1519    /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1520    #[inline(always)]
1521    fn from(boxed: Box<T, A>) -> Self {
1522        Box::into_pin(boxed)
1523    }
1524}
1525
1526#[cfg(not(no_global_oom_handling))]
1527impl<T: Copy, A: Allocator + Default> From<&[T]> for Box<[T], A> {
1528    /// Converts a `&[T]` into a `Box<[T]>`
1529    ///
1530    /// This conversion allocates on the heap
1531    /// and performs a copy of `slice` and its contents.
1532    ///
1533    /// # Examples
1534    /// ```rust
1535    /// // create a &[u8] which will be used to create a Box<[u8]>
1536    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1537    /// let boxed_slice: Box<[u8]> = Box::from(slice);
1538    ///
1539    /// println!("{boxed_slice:?}");
1540    /// ```
1541    #[inline(always)]
1542    fn from(slice: &[T]) -> Box<[T], A> {
1543        let len = slice.len();
1544        let buf = RawVec::with_capacity_in(len, A::default());
1545        unsafe {
1546            ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
1547            buf.into_box(slice.len()).assume_init()
1548        }
1549    }
1550}
1551
1552#[cfg(not(no_global_oom_handling))]
1553impl<A: Allocator + Default> From<&str> for Box<str, A> {
1554    /// Converts a `&str` into a `Box<str>`
1555    ///
1556    /// This conversion allocates on the heap
1557    /// and performs a copy of `s`.
1558    ///
1559    /// # Examples
1560    ///
1561    /// ```rust
1562    /// let boxed: Box<str> = Box::from("hello");
1563    /// println!("{boxed}");
1564    /// ```
1565    #[inline(always)]
1566    fn from(s: &str) -> Box<str, A> {
1567        let (raw, alloc) = Box::into_raw_with_allocator(Box::<[u8], A>::from(s.as_bytes()));
1568        unsafe { Box::from_raw_in(raw as *mut str, alloc) }
1569    }
1570}
1571
1572impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
1573    /// Converts a `Box<str>` into a `Box<[u8]>`
1574    ///
1575    /// This conversion does not allocate on the heap and happens in place.
1576    ///
1577    /// # Examples
1578    /// ```rust
1579    /// // create a Box<str> which will be used to create a Box<[u8]>
1580    /// let boxed: Box<str> = Box::from("hello");
1581    /// let boxed_str: Box<[u8]> = Box::from(boxed);
1582    ///
1583    /// // create a &[u8] which will be used to create a Box<[u8]>
1584    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1585    /// let boxed_slice = Box::from(slice);
1586    ///
1587    /// assert_eq!(boxed_slice, boxed_str);
1588    /// ```
1589    #[inline(always)]
1590    fn from(s: Box<str, A>) -> Self {
1591        let (raw, alloc) = Box::into_raw_with_allocator(s);
1592        unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
1593    }
1594}
1595
1596impl<T, A: Allocator, const N: usize> Box<[T; N], A> {
1597    #[inline(always)]
1598    pub fn slice(b: Self) -> Box<[T], A> {
1599        let (ptr, alloc) = Box::into_raw_with_allocator(b);
1600        unsafe { Box::from_raw_in(ptr, alloc) }
1601    }
1602
1603    pub fn into_vec(self) -> Vec<T, A>
1604    where
1605        A: Allocator,
1606    {
1607        unsafe {
1608            let (b, alloc) = Box::into_raw_with_allocator(self);
1609            Vec::from_raw_parts_in(b as *mut T, N, N, alloc)
1610        }
1611    }
1612}
1613
1614#[cfg(not(no_global_oom_handling))]
1615impl<T, const N: usize> From<[T; N]> for Box<[T]> {
1616    /// Converts a `[T; N]` into a `Box<[T]>`
1617    ///
1618    /// This conversion moves the array to newly heap-allocated memory.
1619    ///
1620    /// # Examples
1621    ///
1622    /// ```rust
1623    /// let boxed: Box<[u8]> = Box::from([4, 2]);
1624    /// println!("{boxed:?}");
1625    /// ```
1626    #[inline(always)]
1627    fn from(array: [T; N]) -> Box<[T]> {
1628        Box::slice(Box::new(array))
1629    }
1630}
1631
1632impl<T, A: Allocator, const N: usize> TryFrom<Box<[T], A>> for Box<[T; N], A> {
1633    type Error = Box<[T], A>;
1634
1635    /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
1636    ///
1637    /// The conversion occurs in-place and does not require a
1638    /// new memory allocation.
1639    ///
1640    /// # Errors
1641    ///
1642    /// Returns the old `Box<[T]>` in the `Err` variant if
1643    /// `boxed_slice.len()` does not equal `N`.
1644    #[inline(always)]
1645    fn try_from(boxed_slice: Box<[T], A>) -> Result<Self, Self::Error> {
1646        if boxed_slice.len() == N {
1647            let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice);
1648            Ok(unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) })
1649        } else {
1650            Err(boxed_slice)
1651        }
1652    }
1653}
1654
1655impl<A: Allocator> Box<dyn Any, A> {
1656    /// Attempt to downcast the box to a concrete type.
1657    ///
1658    /// # Examples
1659    ///
1660    /// ```
1661    /// use std::any::Any;
1662    ///
1663    /// fn print_if_string(value: Box<dyn Any>) {
1664    ///     if let Ok(string) = value.downcast::<String>() {
1665    ///         println!("String ({}): {}", string.len(), string);
1666    ///     }
1667    /// }
1668    ///
1669    /// let my_string = "Hello World".to_string();
1670    /// print_if_string(Box::new(my_string));
1671    /// print_if_string(Box::new(0i8));
1672    /// ```
1673    #[inline(always)]
1674    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1675        if self.is::<T>() {
1676            unsafe { Ok(self.downcast_unchecked::<T>()) }
1677        } else {
1678            Err(self)
1679        }
1680    }
1681
1682    /// Downcasts the box to a concrete type.
1683    ///
1684    /// For a safe alternative see [`downcast`].
1685    ///
1686    /// # Examples
1687    ///
1688    /// ```
1689    /// #![feature(downcast_unchecked)]
1690    ///
1691    /// use std::any::Any;
1692    ///
1693    /// let x: Box<dyn Any> = Box::new(1_usize);
1694    ///
1695    /// unsafe {
1696    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1697    /// }
1698    /// ```
1699    ///
1700    /// # Safety
1701    ///
1702    /// The contained value must be of type `T`. Calling this method
1703    /// with the incorrect type is *undefined behavior*.
1704    ///
1705    /// [`downcast`]: Self::downcast
1706    #[inline(always)]
1707    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1708        debug_assert!(self.is::<T>());
1709        unsafe {
1710            let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
1711            Box::from_raw_in(raw as *mut T, alloc)
1712        }
1713    }
1714}
1715
1716impl<A: Allocator> Box<dyn Any + Send, A> {
1717    /// Attempt to downcast the box to a concrete type.
1718    ///
1719    /// # Examples
1720    ///
1721    /// ```
1722    /// use std::any::Any;
1723    ///
1724    /// fn print_if_string(value: Box<dyn Any + Send>) {
1725    ///     if let Ok(string) = value.downcast::<String>() {
1726    ///         println!("String ({}): {}", string.len(), string);
1727    ///     }
1728    /// }
1729    ///
1730    /// let my_string = "Hello World".to_string();
1731    /// print_if_string(Box::new(my_string));
1732    /// print_if_string(Box::new(0i8));
1733    /// ```
1734    #[inline(always)]
1735    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1736        if self.is::<T>() {
1737            unsafe { Ok(self.downcast_unchecked::<T>()) }
1738        } else {
1739            Err(self)
1740        }
1741    }
1742
1743    /// Downcasts the box to a concrete type.
1744    ///
1745    /// For a safe alternative see [`downcast`].
1746    ///
1747    /// # Examples
1748    ///
1749    /// ```
1750    /// #![feature(downcast_unchecked)]
1751    ///
1752    /// use std::any::Any;
1753    ///
1754    /// let x: Box<dyn Any + Send> = Box::new(1_usize);
1755    ///
1756    /// unsafe {
1757    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1758    /// }
1759    /// ```
1760    ///
1761    /// # Safety
1762    ///
1763    /// The contained value must be of type `T`. Calling this method
1764    /// with the incorrect type is *undefined behavior*.
1765    ///
1766    /// [`downcast`]: Self::downcast
1767    #[inline(always)]
1768    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1769        debug_assert!(self.is::<T>());
1770        unsafe {
1771            let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
1772            Box::from_raw_in(raw as *mut T, alloc)
1773        }
1774    }
1775}
1776
1777impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
1778    /// Attempt to downcast the box to a concrete type.
1779    ///
1780    /// # Examples
1781    ///
1782    /// ```
1783    /// use std::any::Any;
1784    ///
1785    /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
1786    ///     if let Ok(string) = value.downcast::<String>() {
1787    ///         println!("String ({}): {}", string.len(), string);
1788    ///     }
1789    /// }
1790    ///
1791    /// let my_string = "Hello World".to_string();
1792    /// print_if_string(Box::new(my_string));
1793    /// print_if_string(Box::new(0i8));
1794    /// ```
1795    #[inline(always)]
1796    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1797        if self.is::<T>() {
1798            unsafe { Ok(self.downcast_unchecked::<T>()) }
1799        } else {
1800            Err(self)
1801        }
1802    }
1803
1804    /// Downcasts the box to a concrete type.
1805    ///
1806    /// For a safe alternative see [`downcast`].
1807    ///
1808    /// # Examples
1809    ///
1810    /// ```
1811    /// #![feature(downcast_unchecked)]
1812    ///
1813    /// use std::any::Any;
1814    ///
1815    /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
1816    ///
1817    /// unsafe {
1818    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1819    /// }
1820    /// ```
1821    ///
1822    /// # Safety
1823    ///
1824    /// The contained value must be of type `T`. Calling this method
1825    /// with the incorrect type is *undefined behavior*.
1826    ///
1827    /// [`downcast`]: Self::downcast
1828    #[inline(always)]
1829    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1830        debug_assert!(self.is::<T>());
1831        unsafe {
1832            let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
1833                Box::into_raw_with_allocator(self);
1834            Box::from_raw_in(raw as *mut T, alloc)
1835        }
1836    }
1837}
1838
1839impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
1840    #[inline(always)]
1841    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1842        fmt::Display::fmt(&**self, f)
1843    }
1844}
1845
1846impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
1847    #[inline(always)]
1848    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1849        fmt::Debug::fmt(&**self, f)
1850    }
1851}
1852
1853impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
1854    #[inline(always)]
1855    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1856        // It's not possible to extract the inner Uniq directly from the Box,
1857        // instead we cast it to a *const which aliases the Unique
1858        let ptr: *const T = &**self;
1859        fmt::Pointer::fmt(&ptr, f)
1860    }
1861}
1862
1863impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
1864    type Target = T;
1865
1866    #[inline(always)]
1867    fn deref(&self) -> &T {
1868        unsafe { self.0.as_ref() }
1869    }
1870}
1871
1872impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
1873    #[inline(always)]
1874    fn deref_mut(&mut self) -> &mut T {
1875        unsafe { self.0.as_mut() }
1876    }
1877}
1878
1879impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
1880    type Item = I::Item;
1881
1882    #[inline(always)]
1883    fn next(&mut self) -> Option<I::Item> {
1884        (**self).next()
1885    }
1886
1887    #[inline(always)]
1888    fn size_hint(&self) -> (usize, Option<usize>) {
1889        (**self).size_hint()
1890    }
1891
1892    #[inline(always)]
1893    fn nth(&mut self, n: usize) -> Option<I::Item> {
1894        (**self).nth(n)
1895    }
1896
1897    #[inline(always)]
1898    fn last(self) -> Option<I::Item> {
1899        BoxIter::last(self)
1900    }
1901}
1902
1903trait BoxIter {
1904    type Item;
1905    fn last(self) -> Option<Self::Item>;
1906}
1907
1908impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
1909    type Item = I::Item;
1910
1911    #[inline(always)]
1912    fn last(self) -> Option<I::Item> {
1913        #[inline(always)]
1914        fn some<T>(_: Option<T>, x: T) -> Option<T> {
1915            Some(x)
1916        }
1917
1918        self.fold(None, some)
1919    }
1920}
1921
1922impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
1923    #[inline(always)]
1924    fn next_back(&mut self) -> Option<I::Item> {
1925        (**self).next_back()
1926    }
1927    #[inline(always)]
1928    fn nth_back(&mut self, n: usize) -> Option<I::Item> {
1929        (**self).nth_back(n)
1930    }
1931}
1932
1933impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
1934    #[inline(always)]
1935    fn len(&self) -> usize {
1936        (**self).len()
1937    }
1938}
1939
1940impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
1941
1942#[cfg(not(no_global_oom_handling))]
1943impl<I> FromIterator<I> for Box<[I]> {
1944    #[inline(always)]
1945    fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
1946        iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
1947    }
1948}
1949
1950#[cfg(not(no_global_oom_handling))]
1951impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
1952    #[inline(always)]
1953    fn clone(&self) -> Self {
1954        let alloc = Box::allocator(self).clone();
1955        let mut vec = Vec::with_capacity_in(self.len(), alloc);
1956        vec.extend_from_slice(self);
1957        vec.into_boxed_slice()
1958    }
1959
1960    #[inline(always)]
1961    fn clone_from(&mut self, other: &Self) {
1962        if self.len() == other.len() {
1963            self.clone_from_slice(other);
1964        } else {
1965            *self = other.clone();
1966        }
1967    }
1968}
1969
1970impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
1971    #[inline(always)]
1972    fn borrow(&self) -> &T {
1973        self
1974    }
1975}
1976
1977impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
1978    #[inline(always)]
1979    fn borrow_mut(&mut self) -> &mut T {
1980        self
1981    }
1982}
1983
1984impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
1985    #[inline(always)]
1986    fn as_ref(&self) -> &T {
1987        self
1988    }
1989}
1990
1991impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
1992    #[inline(always)]
1993    fn as_mut(&mut self) -> &mut T {
1994        self
1995    }
1996}
1997
1998/* Nota bene
1999 *
2000 *  We could have chosen not to add this impl, and instead have written a
2001 *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
2002 *  because Box<T> implements Unpin even when T does not, as a result of
2003 *  this impl.
2004 *
2005 *  We chose this API instead of the alternative for a few reasons:
2006 *      - Logically, it is helpful to understand pinning in regard to the
2007 *        memory region being pointed to. For this reason none of the
2008 *        standard library pointer types support projecting through a pin
2009 *        (Box<T> is the only pointer type in std for which this would be
2010 *        safe.)
2011 *      - It is in practice very useful to have Box<T> be unconditionally
2012 *        Unpin because of trait objects, for which the structural auto
2013 *        trait functionality does not apply (e.g., Box<dyn Foo> would
2014 *        otherwise not be Unpin).
2015 *
2016 *  Another type with the same semantics as Box but only a conditional
2017 *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
2018 *  could have a method to project a Pin<T> from it.
2019 */
2020impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}
2021
2022impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
2023where
2024    A: 'static,
2025{
2026    type Output = F::Output;
2027
2028    #[inline(always)]
2029    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
2030        F::poll(Pin::new(&mut *self), cx)
2031    }
2032}
2033
2034#[cfg(feature = "std")]
2035mod error {
2036    use std::error::Error;
2037
2038    use super::Box;
2039
2040    #[cfg(not(no_global_oom_handling))]
2041    impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> {
2042        /// Converts a type of [`Error`] into a box of dyn [`Error`].
2043        ///
2044        /// # Examples
2045        ///
2046        /// ```
2047        /// use std::error::Error;
2048        /// use std::fmt;
2049        /// use std::mem;
2050        ///
2051        /// #[derive(Debug)]
2052        /// struct AnError;
2053        ///
2054        /// impl fmt::Display for AnError {
2055        ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2056        ///         write!(f, "An error")
2057        ///     }
2058        /// }
2059        ///
2060        /// impl Error for AnError {}
2061        ///
2062        /// let an_error = AnError;
2063        /// assert!(0 == mem::size_of_val(&an_error));
2064        /// let a_boxed_error = Box::<dyn Error>::from(an_error);
2065        /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2066        /// ```
2067        #[inline(always)]
2068        fn from(err: E) -> Box<dyn Error + 'a> {
2069            unsafe { Box::from_raw(Box::leak(Box::new(err))) }
2070        }
2071    }
2072
2073    #[cfg(not(no_global_oom_handling))]
2074    impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> {
2075        /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of
2076        /// dyn [`Error`] + [`Send`] + [`Sync`].
2077        ///
2078        /// # Examples
2079        ///
2080        /// ```
2081        /// use std::error::Error;
2082        /// use std::fmt;
2083        /// use std::mem;
2084        ///
2085        /// #[derive(Debug)]
2086        /// struct AnError;
2087        ///
2088        /// impl fmt::Display for AnError {
2089        ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2090        ///         write!(f, "An error")
2091        ///     }
2092        /// }
2093        ///
2094        /// impl Error for AnError {}
2095        ///
2096        /// unsafe impl Send for AnError {}
2097        ///
2098        /// unsafe impl Sync for AnError {}
2099        ///
2100        /// let an_error = AnError;
2101        /// assert!(0 == mem::size_of_val(&an_error));
2102        /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
2103        /// assert!(
2104        ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2105        /// ```
2106        #[inline(always)]
2107        fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
2108            unsafe { Box::from_raw(Box::leak(Box::new(err))) }
2109        }
2110    }
2111
2112    impl<T: Error> Error for Box<T> {
2113        #[inline(always)]
2114        fn source(&self) -> Option<&(dyn Error + 'static)> {
2115            Error::source(&**self)
2116        }
2117    }
2118}
2119
2120#[cfg(feature = "std")]
2121impl<R: std::io::Read + ?Sized, A: Allocator> std::io::Read for Box<R, A> {
2122    #[inline]
2123    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
2124        (**self).read(buf)
2125    }
2126
2127    #[inline]
2128    fn read_to_end(&mut self, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
2129        (**self).read_to_end(buf)
2130    }
2131
2132    #[inline]
2133    fn read_to_string(&mut self, buf: &mut String) -> std::io::Result<usize> {
2134        (**self).read_to_string(buf)
2135    }
2136
2137    #[inline]
2138    fn read_exact(&mut self, buf: &mut [u8]) -> std::io::Result<()> {
2139        (**self).read_exact(buf)
2140    }
2141}
2142
2143#[cfg(feature = "std")]
2144impl<W: std::io::Write + ?Sized, A: Allocator> std::io::Write for Box<W, A> {
2145    #[inline]
2146    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
2147        (**self).write(buf)
2148    }
2149
2150    #[inline]
2151    fn flush(&mut self) -> std::io::Result<()> {
2152        (**self).flush()
2153    }
2154
2155    #[inline]
2156    fn write_all(&mut self, buf: &[u8]) -> std::io::Result<()> {
2157        (**self).write_all(buf)
2158    }
2159
2160    #[inline]
2161    fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> std::io::Result<()> {
2162        (**self).write_fmt(fmt)
2163    }
2164}
2165
2166#[cfg(feature = "std")]
2167impl<S: std::io::Seek + ?Sized, A: Allocator> std::io::Seek for Box<S, A> {
2168    #[inline]
2169    fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
2170        (**self).seek(pos)
2171    }
2172
2173    #[inline]
2174    fn stream_position(&mut self) -> std::io::Result<u64> {
2175        (**self).stream_position()
2176    }
2177}
2178
2179#[cfg(feature = "std")]
2180impl<B: std::io::BufRead + ?Sized, A: Allocator> std::io::BufRead for Box<B, A> {
2181    #[inline]
2182    fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
2183        (**self).fill_buf()
2184    }
2185
2186    #[inline]
2187    fn consume(&mut self, amt: usize) {
2188        (**self).consume(amt)
2189    }
2190
2191    #[inline]
2192    fn read_until(&mut self, byte: u8, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
2193        (**self).read_until(byte, buf)
2194    }
2195
2196    #[inline]
2197    fn read_line(&mut self, buf: &mut std::string::String) -> std::io::Result<usize> {
2198        (**self).read_line(buf)
2199    }
2200}
2201
2202#[cfg(feature = "alloc")]
2203impl<A: Allocator> Extend<Box<str, A>> for alloc_crate::string::String {
2204    fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
2205        iter.into_iter().for_each(move |s| self.push_str(&s));
2206    }
2207}
2208
2209#[cfg(not(no_global_oom_handling))]
2210#[cfg(feature = "std")]
2211impl Clone for Box<std::ffi::CStr> {
2212    #[inline]
2213    fn clone(&self) -> Self {
2214        (**self).into()
2215    }
2216}
2217
2218#[cfg(not(no_global_oom_handling))]
2219#[cfg(feature = "std")]
2220impl From<&std::ffi::CStr> for Box<std::ffi::CStr> {
2221    /// Converts a `&CStr` into a `Box<CStr>`,
2222    /// by copying the contents into a newly allocated [`Box`].
2223    fn from(s: &std::ffi::CStr) -> Box<std::ffi::CStr> {
2224        let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
2225        unsafe { Box::from_raw(Box::into_raw(boxed) as *mut std::ffi::CStr) }
2226    }
2227}
2228
2229#[cfg(not(no_global_oom_handling))]
2230#[cfg(feature = "fresh-rust")]
2231impl Clone for Box<core::ffi::CStr> {
2232    #[inline]
2233    fn clone(&self) -> Self {
2234        (**self).into()
2235    }
2236}
2237
2238#[cfg(not(no_global_oom_handling))]
2239#[cfg(feature = "fresh-rust")]
2240impl From<&core::ffi::CStr> for Box<core::ffi::CStr> {
2241    /// Converts a `&CStr` into a `Box<CStr>`,
2242    /// by copying the contents into a newly allocated [`Box`].
2243    fn from(s: &core::ffi::CStr) -> Box<core::ffi::CStr> {
2244        let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
2245        unsafe { Box::from_raw(Box::into_raw(boxed) as *mut core::ffi::CStr) }
2246    }
2247}
2248
2249#[cfg(feature = "serde")]
2250impl<T, A> serde::Serialize for Box<T, A>
2251where
2252    T: serde::Serialize,
2253    A: Allocator,
2254{
2255    #[inline(always)]
2256    fn serialize<S: serde::ser::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
2257        (**self).serialize(serializer)
2258    }
2259}
2260
2261#[cfg(feature = "serde")]
2262impl<'de, T, A> serde::Deserialize<'de> for Box<T, A>
2263where
2264    T: serde::Deserialize<'de>,
2265    A: Allocator + Default,
2266{
2267    #[inline(always)]
2268    fn deserialize<D: serde::de::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
2269        let value = T::deserialize(deserializer)?;
2270        Ok(Box::new_in(value, A::default()))
2271    }
2272}