itertools/
next_array.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
use core::mem::{self, MaybeUninit};

/// An array of at most `N` elements.
struct ArrayBuilder<T, const N: usize> {
    /// The (possibly uninitialized) elements of the `ArrayBuilder`.
    ///
    /// # Safety
    ///
    /// The elements of `arr[..len]` are valid `T`s.
    arr: [MaybeUninit<T>; N],

    /// The number of leading elements of `arr` that are valid `T`s, len <= N.
    len: usize,
}

impl<T, const N: usize> ArrayBuilder<T, N> {
    /// Initializes a new, empty `ArrayBuilder`.
    pub fn new() -> Self {
        // SAFETY: The safety invariant of `arr` trivially holds for `len = 0`.
        Self {
            arr: [(); N].map(|_| MaybeUninit::uninit()),
            len: 0,
        }
    }

    /// Pushes `value` onto the end of the array.
    ///
    /// # Panics
    ///
    /// This panics if `self.len >= N`.
    #[inline(always)]
    pub fn push(&mut self, value: T) {
        // PANICS: This will panic if `self.len >= N`.
        let place = &mut self.arr[self.len];
        // SAFETY: The safety invariant of `self.arr` applies to elements at
        // indices `0..self.len` — not to the element at `self.len`. Writing to
        // the element at index `self.len` therefore does not violate the safety
        // invariant of `self.arr`. Even if this line panics, we have not
        // created any intermediate invalid state.
        *place = MaybeUninit::new(value);
        // Lemma: `self.len < N`. By invariant, `self.len <= N`. Above, we index
        // into `self.arr`, which has size `N`, at index `self.len`. If `self.len == N`
        // at that point, that index would be out-of-bounds, and the index
        // operation would panic. Thus, `self.len != N`, and since `self.len <= N`,
        // that means that `self.len < N`.
        //
        // PANICS: Since `self.len < N`, and since `N <= usize::MAX`,
        // `self.len + 1 <= usize::MAX`, and so `self.len += 1` will not
        // overflow. Overflow is the only panic condition of `+=`.
        //
        // SAFETY:
        // - We are required to uphold the invariant that `self.len <= N`.
        //   Since, by the preceding lemma, `self.len < N` at this point in the
        //   code, `self.len += 1` results in `self.len <= N`.
        // - We are required to uphold the invariant that `self.arr[..self.len]`
        //   are valid instances of `T`. Since this invariant already held when
        //   this method was called, and since we only increment `self.len`
        //   by 1 here, we only need to prove that the element at
        //   `self.arr[self.len]` (using the value of `self.len` before incrementing)
        //   is valid. Above, we construct `place` to point to `self.arr[self.len]`,
        //   and then initialize `*place` to `MaybeUninit::new(value)`, which is
        //   a valid `T` by construction.
        self.len += 1;
    }

    /// Consumes the elements in the `ArrayBuilder` and returns them as an array
    /// `[T; N]`.
    ///
    /// If `self.len() < N`, this returns `None`.
    pub fn take(&mut self) -> Option<[T; N]> {
        if self.len == N {
            // SAFETY: Decreasing the value of `self.len` cannot violate the
            // safety invariant on `self.arr`.
            self.len = 0;

            // SAFETY: Since `self.len` is 0, `self.arr` may safely contain
            // uninitialized elements.
            let arr = mem::replace(&mut self.arr, [(); N].map(|_| MaybeUninit::uninit()));

            Some(arr.map(|v| {
                // SAFETY: We know that all elements of `arr` are valid because
                // we checked that `len == N`.
                unsafe { v.assume_init() }
            }))
        } else {
            None
        }
    }
}

impl<T, const N: usize> AsMut<[T]> for ArrayBuilder<T, N> {
    fn as_mut(&mut self) -> &mut [T] {
        let valid = &mut self.arr[..self.len];
        // SAFETY: By invariant on `self.arr`, the elements of `self.arr` at
        // indices `0..self.len` are in a valid state. Since `valid` references
        // only these elements, the safety precondition of
        // `slice_assume_init_mut` is satisfied.
        unsafe { slice_assume_init_mut(valid) }
    }
}

impl<T, const N: usize> Drop for ArrayBuilder<T, N> {
    // We provide a non-trivial `Drop` impl, because the trivial impl would be a
    // no-op; `MaybeUninit<T>` has no innate awareness of its own validity, and
    // so it can only forget its contents. By leveraging the safety invariant of
    // `self.arr`, we do know which elements of `self.arr` are valid, and can
    // selectively run their destructors.
    fn drop(&mut self) {
        // SAFETY:
        // - by invariant on `&mut [T]`, `self.as_mut()` is:
        //   - valid for reads and writes
        //   - properly aligned
        //   - non-null
        // - the dropped `T` are valid for dropping; they do not have any
        //   additional library invariants that we've violated
        // - no other pointers to `valid` exist (since we're in the context of
        //   `drop`)
        unsafe { core::ptr::drop_in_place(self.as_mut()) }
    }
}

/// Assuming all the elements are initialized, get a mutable slice to them.
///
/// # Safety
///
/// The caller guarantees that the elements `T` referenced by `slice` are in a
/// valid state.
unsafe fn slice_assume_init_mut<T>(slice: &mut [MaybeUninit<T>]) -> &mut [T] {
    // SAFETY: Casting `&mut [MaybeUninit<T>]` to `&mut [T]` is sound, because
    // `MaybeUninit<T>` is guaranteed to have the same size, alignment and ABI
    // as `T`, and because the caller has guaranteed that `slice` is in the
    // valid state.
    unsafe { &mut *(slice as *mut [MaybeUninit<T>] as *mut [T]) }
}

/// Equivalent to `it.next_array()`.
pub(crate) fn next_array<I, const N: usize>(it: &mut I) -> Option<[I::Item; N]>
where
    I: Iterator,
{
    let mut builder = ArrayBuilder::new();
    for _ in 0..N {
        builder.push(it.next()?);
    }
    builder.take()
}

#[cfg(test)]
mod test {
    use super::ArrayBuilder;

    #[test]
    fn zero_len_take() {
        let mut builder = ArrayBuilder::<(), 0>::new();
        let taken = builder.take();
        assert_eq!(taken, Some([(); 0]));
    }

    #[test]
    #[should_panic]
    fn zero_len_push() {
        let mut builder = ArrayBuilder::<(), 0>::new();
        builder.push(());
    }

    #[test]
    fn push_4() {
        let mut builder = ArrayBuilder::<(), 4>::new();
        assert_eq!(builder.take(), None);

        builder.push(());
        assert_eq!(builder.take(), None);

        builder.push(());
        assert_eq!(builder.take(), None);

        builder.push(());
        assert_eq!(builder.take(), None);

        builder.push(());
        assert_eq!(builder.take(), Some([(); 4]));
    }

    #[test]
    fn tracked_drop() {
        use std::panic::{catch_unwind, AssertUnwindSafe};
        use std::sync::atomic::{AtomicU16, Ordering};

        static DROPPED: AtomicU16 = AtomicU16::new(0);

        #[derive(Debug, PartialEq)]
        struct TrackedDrop;

        impl Drop for TrackedDrop {
            fn drop(&mut self) {
                DROPPED.fetch_add(1, Ordering::Relaxed);
            }
        }

        {
            let builder = ArrayBuilder::<TrackedDrop, 0>::new();
            assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
            drop(builder);
            assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
        }

        {
            let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
            builder.push(TrackedDrop);
            assert_eq!(builder.take(), None);
            assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
            drop(builder);
            assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 1);
        }

        {
            let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
            builder.push(TrackedDrop);
            builder.push(TrackedDrop);
            assert!(matches!(builder.take(), Some(_)));
            assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 2);
            drop(builder);
            assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
        }

        {
            let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();

            builder.push(TrackedDrop);
            builder.push(TrackedDrop);

            assert!(catch_unwind(AssertUnwindSafe(|| {
                builder.push(TrackedDrop);
            }))
            .is_err());

            assert_eq!(DROPPED.load(Ordering::Relaxed), 1);

            drop(builder);

            assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 3);
        }

        {
            let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();

            builder.push(TrackedDrop);
            builder.push(TrackedDrop);

            assert!(catch_unwind(AssertUnwindSafe(|| {
                builder.push(TrackedDrop);
            }))
            .is_err());

            assert_eq!(DROPPED.load(Ordering::Relaxed), 1);

            assert!(matches!(builder.take(), Some(_)));

            assert_eq!(DROPPED.load(Ordering::Relaxed), 3);

            builder.push(TrackedDrop);
            builder.push(TrackedDrop);

            assert!(matches!(builder.take(), Some(_)));

            assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 5);
        }
    }
}