scroll/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
//! # Scroll
//!
//! ```text, no_run
//!         _______________
//!    ()==(              (@==()
//!         '______________'|
//!           |             |
//!           |   ἀρετή     |
//!         __)_____________|
//!    ()==(               (@==()
//!         '--------------'
//!
//! ```
//!
//! Scroll is a library for easily and efficiently reading/writing types from data containers like
//! byte arrays.
//!
//! ## Easily:
//!
//! Scroll sets down a number of traits:
//!
//! [FromCtx](ctx/trait.FromCtx.html), [IntoCtx](ctx/trait.IntoCtx.html),
//! [TryFromCtx](ctx/trait.TryFromCtx.html) and [TryIntoCtx](ctx/trait.TryIntoCtx.html) — further
//! explained in the [ctx module](ctx/index.html); to be implemented on custom types to allow
//! reading, writing, and potentially fallible reading/writing respectively.
//!
//! [Pread](trait.Pread.html) and [Pwrite](trait.Pwrite.html) which are implemented on data
//! containers such as byte arrays to define how to read or respectively write types implementing
//! the *Ctx traits above.
//! In addition scroll also defines [IOread](trait.IOread.html) and
//! [IOwrite](trait.IOwrite.html) with additional constraits that then allow reading and writing
//! from `std::io` [Read](https://doc.rust-lang.org/nightly/std/io/trait.Read.html) and
//! [Write](https://doc.rust-lang.org/nightly/std/io/trait.Write.html).
//!
//!
//! In most cases you can use [scroll_derive](https://docs.rs/scroll_derive) to derive sensible
//! defaults for `Pread`, `Pwrite`, their IO counterpart and `SizeWith`.  More complex situations
//! call for manual implementation of those traits; refer to [the ctx module](ctx/index.html) for
//! details.
//!
//!
//! ## Efficiently:
//!
//! Reading Slices — including [&str](https://doc.rust-lang.org/std/primitive.str.html) — supports
//! zero-copy. Scroll is designed with a `no_std` context in mind; every dependency on `std` is
//! cfg-gated and errors need not allocate.
//!
//! Reads by default take only immutable references wherever possible, allowing for trivial
//! parallelization.
//!
//! # Examples
//!
//! Let's start with a simple example
//!
//! ```rust
//! use scroll::{ctx, Pread};
//!
//! // Let's first define some data, cfg-gated so our assertions later on hold.
//! #[cfg(target_endian = "little")]
//! let bytes: [u8; 4] = [0xde, 0xad, 0xbe, 0xef];
//! #[cfg(target_endian = "big")]
//! let bytes: [u8; 4] = [0xef, 0xbe, 0xad, 0xde];
//!
//! // We can read a u32 from the array `bytes` at offset 0.
//! // This will use a default context for the type being parsed;
//! // in the case of u32 this defines to use the host's endianess.
//! let number = bytes.pread::<u32>(0).unwrap();
//! assert_eq!(number, 0xefbeadde);
//!
//!
//! // Similarly we can also read a single byte at offset 2
//! // This time using type ascription instead of the turbofish (::<>) operator.
//! let byte: u8 = bytes.pread(2).unwrap();
//! #[cfg(target_endian = "little")]
//! assert_eq!(byte, 0xbe);
//! #[cfg(target_endian = "big")]
//! assert_eq!(byte, 0xad);
//!
//!
//! // If required we can also provide a specific parsing context; e.g. if we want to explicitly
//! // define the endianess to use:
//! let be_number: u32 = bytes.pread_with(0, scroll::BE).unwrap();
//! #[cfg(target_endian = "little")]
//! assert_eq!(be_number, 0xdeadbeef);
//! #[cfg(target_endian = "big")]
//! assert_eq!(be_number, 0xefbeadde);
//!
//! let be_number16 = bytes.pread_with::<u16>(1, scroll::BE).unwrap();
//! #[cfg(target_endian = "little")]
//! assert_eq!(be_number16, 0xadbe);
//! #[cfg(target_endian = "big")]
//! assert_eq!(be_number16, 0xbead);
//!
//!
//! // Reads may fail; in this example due to a too large read for the given container.
//! // Scroll's error type does not by default allocate to work in environments like no_std.
//! let byte_err: scroll::Result<i64> = bytes.pread(0);
//! assert!(byte_err.is_err());
//!
//!
//! // We can parse out custom datatypes, or types with lifetimes, as long as they implement
//! // the conversion traits `TryFromCtx/FromCtx`.
//! // Here we use the default context for &str which parses are C-style '\0'-delimited string.
//! let hello: &[u8] = b"hello world\0more words";
//! let hello_world: &str = hello.pread(0).unwrap();
//! assert_eq!("hello world", hello_world);
//!
//! // We can again provide a custom context; for example to parse Space-delimited strings.
//! // As you can see while we still call `pread` changing the context can influence the output —
//! // instead of splitting at '\0' we split at spaces
//! let hello2: &[u8] = b"hello world\0more words";
//! let world: &str = hello2.pread_with(6, ctx::StrCtx::Delimiter(ctx::SPACE)).unwrap();
//! assert_eq!("world\0more", world);
//! ```
//!
//! ## `std::io` API
//!
//! Scroll also allows reading from `std::io`. For this the types to read need to implement
//! [FromCtx](ctx/trait.FromCtx.html) and [SizeWith](ctx/trait.SizeWith.html).
//!
//! ```rust
//! ##[cfg(feature = "std")] {
//! use std::io::Cursor;
//! use scroll::{IOread, ctx, Endian};
//! let bytes = [0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0xef,0xbe,0x00,0x00,];
//! let mut cursor = Cursor::new(bytes);
//!
//! // IOread uses std::io::Read methods, thus the Cursor will be incremented on these reads:
//! let prev = cursor.position();
//!
//! let integer = cursor.ioread_with::<u64>(Endian::Little).unwrap();
//!
//! let after = cursor.position();
//!
//! assert!(prev < after);
//!
//! // SizeWith allows us to define a context-sensitive size of a read type:
//! // Contexts can have different instantiations; e.g. the `Endian` context can be either Little or
//! // Big. This is useful if for example the context contains the word-size of fields to be
//! // read/written, e.g. switching between ELF32 or ELF64 at runtime.
//! let size = <u64 as ctx::SizeWith<Endian>>::size_with(&Endian::Little) as u64;
//! assert_eq!(prev + size, after);
//! # }
//! ```
//!
//! In the same vein as IOread we can use IOwrite to write a type to anything implementing
//! `std::io::Write`:
//!
//! ```rust
//! ##[cfg(feature = "std")] {
//! use std::io::Cursor;
//! use scroll::{IOwrite};
//!
//! let mut bytes = [0x0u8; 5];
//! let mut cursor = Cursor::new(&mut bytes[..]);
//!
//! // This of course once again increments the cursor position
//! cursor.iowrite_with(0xdeadbeef as u32, scroll::BE).unwrap();
//!
//! assert_eq!(cursor.into_inner(), [0xde, 0xad, 0xbe, 0xef, 0x0]);
//! # }
//! ```
//!
//! ## Complex use cases
//!
//! Scoll is designed to be highly adaptable while providing a strong abstraction between the types
//! being read/written and the data container containing them.
//!
//! In this example we'll define a custom Data and allow it to be read from an arbitrary byte
//! buffer.
//!
//! ```rust
//! use scroll::{self, ctx, Pread, Endian};
//! use scroll::ctx::StrCtx;
//!
//! // Our custom context type. In a more complex situation you could for example store details on
//! // how to write or read your type, field-sizes or other information.
//! // In this simple example we could also do without using a custom context in the first place.
//! #[derive(Copy, Clone)]
//! struct Context(Endian);
//!
//! // Our custom data type
//! struct Data<'zerocopy> {
//!   // This is only a reference to the actual data; we make use of scroll's zero-copy capability
//!   name: &'zerocopy str,
//!   id: u32,
//! }
//!
//! // To allow for safe zero-copying scroll allows to specify lifetimes explicitly:
//! // The context
//! impl<'a> ctx::TryFromCtx<'a, Context> for Data<'a> {
//!   // If necessary you can set a custom error type here, which will be returned by Pread/Pwrite
//!   type Error = scroll::Error;
//!
//!   // Using the explicit lifetime specification again you ensure that read data doesn't outlife
//!   // its source buffer without having to resort to copying.
//!   fn try_from_ctx (src: &'a [u8], ctx: Context)
//!     // the `usize` returned here is the amount of bytes read.
//!     -> Result<(Self, usize), Self::Error>
//!   {
//!     let offset = &mut 0;
//!
//!     let id = src.gread_with(offset, ctx.0)?;
//!
//!     // In a more serious application you would validate data here of course.
//!     let namelen: u16 = src.gread_with(offset, ctx.0)?;
//!     let name = src.gread_with::<&str>(offset, StrCtx::Length(namelen as usize))?;
//!
//!     Ok((Data { name: name, id: id }, *offset))
//!   }
//! }
//!
//! // In lieu of a complex byte buffer we hearken back to a simple &[u8]; the default source
//! // of TryFromCtx. However, any type that implements Pread to produce a &[u8] can now read
//! // `Data` thanks to it's implementation of TryFromCtx.
//! let bytes = b"\x01\x02\x03\x04\x00\x08UserName";
//! let data: Data = bytes.pread_with(0, Context(Endian::Big)).unwrap();
//!
//! assert_eq!(data.id, 0x01020304);
//! assert_eq!(data.name.to_string(), "UserName".to_string());
//! ```
//!
//! For further explanation of the traits and how to implement them manually refer to
//! [Pread](trait.Pread.html) and [TryFromCtx](ctx/trait.TryFromCtx.html).

#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "derive")]
#[allow(unused_imports)]
pub use scroll_derive::{IOread, IOwrite, Pread, Pwrite, SizeWith};

#[cfg(feature = "std")]
extern crate core;

pub mod ctx;
mod endian;
mod error;
mod greater;
mod leb128;
#[cfg(feature = "std")]
mod lesser;
mod pread;
mod pwrite;

pub use crate::endian::*;
pub use crate::error::*;
pub use crate::greater::*;
pub use crate::leb128::*;
#[cfg(feature = "std")]
pub use crate::lesser::*;
pub use crate::pread::*;
pub use crate::pwrite::*;

#[doc(hidden)]
pub mod export {
    pub use ::core::{mem, result};
}

#[allow(unused)]
macro_rules! doc_comment {
    ($x:expr) => {
        #[doc = $x]
        #[doc(hidden)]
        mod readme_tests {}
    };
}

#[cfg(feature = "derive")]
doc_comment!(include_str!("../README.md"));

#[cfg(test)]
mod tests {
    use super::LE;

    #[test]
    fn test_measure_with_bytes() {
        use super::ctx::MeasureWith;
        let bytes: [u8; 4] = [0xef, 0xbe, 0xad, 0xde];
        assert_eq!(bytes.measure_with(&()), 4);
    }

    #[test]
    fn test_measurable() {
        use super::ctx::SizeWith;
        assert_eq!(8, u64::size_with(&LE));
    }

    //////////////////////////////////////////////////////////////
    // begin pread_with
    //////////////////////////////////////////////////////////////

    macro_rules! pwrite_test {
        ($write:ident, $read:ident, $deadbeef:expr) => {
            #[test]
            fn $write() {
                use super::{Pread, Pwrite, BE};
                let mut bytes: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
                let b = &mut bytes[..];
                b.pwrite_with::<$read>($deadbeef, 0, LE).unwrap();
                assert_eq!(b.pread_with::<$read>(0, LE).unwrap(), $deadbeef);
                b.pwrite_with::<$read>($deadbeef, 0, BE).unwrap();
                assert_eq!(b.pread_with::<$read>(0, BE).unwrap(), $deadbeef);
            }
        };
    }

    pwrite_test!(pwrite_and_pread_roundtrip_u16, u16, 0xbeef);
    pwrite_test!(pwrite_and_pread_roundtrip_i16, i16, 0x7eef);
    pwrite_test!(pwrite_and_pread_roundtrip_u32, u32, 0xbeefbeef);
    pwrite_test!(pwrite_and_pread_roundtrip_i32, i32, 0x7eefbeef);
    pwrite_test!(pwrite_and_pread_roundtrip_u64, u64, 0xbeefbeef7eef7eef);
    pwrite_test!(pwrite_and_pread_roundtrip_i64, i64, 0x7eefbeef7eef7eef);

    #[test]
    fn pread_with_be() {
        use super::Pread;
        let bytes: [u8; 2] = [0x7e, 0xef];
        let b = &bytes[..];
        let byte: u16 = b.pread_with(0, super::BE).unwrap();
        assert_eq!(0x7eef, byte);
        let bytes: [u8; 2] = [0xde, 0xad];
        let dead: u16 = bytes.pread_with(0, super::BE).unwrap();
        assert_eq!(0xdead, dead);
    }

    #[test]
    fn pread() {
        use super::Pread;
        let bytes: [u8; 2] = [0x7e, 0xef];
        let b = &bytes[..];
        let byte: u16 = b.pread(0).unwrap();
        #[cfg(target_endian = "little")]
        assert_eq!(0xef7e, byte);
        #[cfg(target_endian = "big")]
        assert_eq!(0x7eef, byte);
    }

    #[test]
    fn pread_slice() {
        use super::ctx::StrCtx;
        use super::Pread;
        let bytes: [u8; 2] = [0x7e, 0xef];
        let b = &bytes[..];
        let iserr: Result<&str, _> = b.pread_with(0, StrCtx::Length(3));
        assert!(iserr.is_err());
        // let bytes2: &[u8]  = b.pread_with(0, 2).unwrap();
        // assert_eq!(bytes2.len(), bytes[..].len());
        // for i in 0..bytes2.len() {
        //     assert_eq!(bytes2[i], bytes[i])
        // }
    }

    #[test]
    fn pread_str() {
        use super::ctx::*;
        use super::Pread;
        let bytes: [u8; 2] = [0x2e, 0x0];
        let b = &bytes[..];
        let s: &str = b.pread(0).unwrap();
        #[cfg(feature = "std")]
        println!("str: {s}");
        assert_eq!(s.len(), bytes[..].len() - 1);
        let bytes: &[u8] = b"hello, world!\0some_other_things";
        let hello_world: &str = bytes.pread_with(0, StrCtx::Delimiter(NULL)).unwrap();
        #[cfg(feature = "std")]
        println!("{hello_world:?}");
        assert_eq!(hello_world.len(), 13);
        let hello: &str = bytes.pread_with(0, StrCtx::Delimiter(SPACE)).unwrap();
        #[cfg(feature = "std")]
        println!("{hello:?}");
        assert_eq!(hello.len(), 6);
        // this could result in underflow so we just try it
        let _error = bytes.pread_with::<&str>(6, StrCtx::Delimiter(SPACE));
        let error = bytes.pread_with::<&str>(7, StrCtx::Delimiter(SPACE));
        #[cfg(feature = "std")]
        println!("{error:?}");
        assert!(error.is_ok());
    }

    /// In this test, we are testing preading
    /// at length boundaries.
    /// In the past, this test was supposed to test failures for `hello_world`.
    /// Since PR#94, this test is unwrapping as we exploit
    /// the fact that if you do &x[x.len()..] you get an empty slice.
    #[test]
    fn pread_str_weird() {
        use super::ctx::*;
        use super::Pread;
        let bytes: &[u8] = b"";
        let hello_world = bytes.pread_with::<&str>(0, StrCtx::Delimiter(NULL));
        #[cfg(feature = "std")]
        println!("1 {hello_world:?}");
        assert!(hello_world.unwrap().is_empty());
        let error = bytes.pread_with::<&str>(7, StrCtx::Delimiter(SPACE));
        #[cfg(feature = "std")]
        println!("2 {error:?}");
        assert!(error.is_err());
        let bytes: &[u8] = b"\0";
        let null = bytes.pread::<&str>(0).unwrap();
        #[cfg(feature = "std")]
        println!("3 {null:?}");
        assert_eq!(null.len(), 0);
    }

    #[test]
    fn pwrite_str_and_bytes() {
        use super::ctx::*;
        use super::{Pread, Pwrite};
        let astring: &str = "lol hello_world lal\0ala imabytes";
        let mut buffer = [0u8; 33];
        buffer.pwrite(astring, 0).unwrap();
        {
            let hello_world = buffer
                .pread_with::<&str>(4, StrCtx::Delimiter(SPACE))
                .unwrap();
            assert_eq!(hello_world, "hello_world");
        }
        let bytes: &[u8] = b"more\0bytes";
        buffer.pwrite(bytes, 0).unwrap();
        let more = bytes
            .pread_with::<&str>(0, StrCtx::Delimiter(NULL))
            .unwrap();
        assert_eq!(more, "more");
        let bytes = bytes
            .pread_with::<&str>(more.len() + 1, StrCtx::Delimiter(NULL))
            .unwrap();
        assert_eq!(bytes, "bytes");
    }

    use core::fmt::{self, Display};

    #[derive(Debug)]
    pub struct ExternalError {}

    impl Display for ExternalError {
        fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
            write!(fmt, "ExternalError")
        }
    }

    #[cfg(feature = "std")]
    impl std::error::Error for ExternalError {
        fn description(&self) -> &str {
            "ExternalError"
        }
        fn cause(&self) -> Option<&dyn std::error::Error> {
            None
        }
    }

    impl From<super::Error> for ExternalError {
        fn from(err: super::Error) -> Self {
            //use super::Error::*;
            match err {
                _ => ExternalError {},
            }
        }
    }

    #[derive(Debug, PartialEq, Eq)]
    pub struct Foo(u16);

    impl super::ctx::TryIntoCtx<super::Endian> for Foo {
        type Error = ExternalError;
        fn try_into_ctx(self, this: &mut [u8], le: super::Endian) -> Result<usize, Self::Error> {
            use super::Pwrite;
            if this.len() < 2 {
                return Err(ExternalError {});
            }
            this.pwrite_with(self.0, 0, le)?;
            Ok(2)
        }
    }

    impl<'a> super::ctx::TryFromCtx<'a, super::Endian> for Foo {
        type Error = ExternalError;
        fn try_from_ctx(this: &'a [u8], le: super::Endian) -> Result<(Self, usize), Self::Error> {
            use super::Pread;
            if this.len() > 2 {
                return Err(ExternalError {});
            }
            let n = this.pread_with(0, le)?;
            Ok((Foo(n), 2))
        }
    }

    #[test]
    fn pread_with_iter_bytes() {
        use super::Pread;
        let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
        let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8];
        let bytes_to = &mut bytes_to[..];
        let bytes_from = &bytes_from[..];
        for i in 0..bytes_from.len() {
            bytes_to[i] = bytes_from.pread(i).unwrap();
        }
        assert_eq!(bytes_to, bytes_from);
    }

    //////////////////////////////////////////////////////////////
    // end pread_with
    //////////////////////////////////////////////////////////////

    //////////////////////////////////////////////////////////////
    // begin gread_with
    //////////////////////////////////////////////////////////////
    macro_rules! g_test {
        ($read:ident, $deadbeef:expr, $typ:ty) => {
            #[test]
            fn $read() {
                use super::Pread;
                let bytes: [u8; 8] = [0xf, 0xe, 0xe, 0xb, 0xd, 0xa, 0xe, 0xd];
                let mut offset = 0;
                let deadbeef: $typ = bytes.gread_with(&mut offset, LE).unwrap();
                assert_eq!(deadbeef, $deadbeef as $typ);
                assert_eq!(offset, ::core::mem::size_of::<$typ>());
            }
        };
    }

    g_test!(simple_gread_u16, 0xe0f, u16);
    g_test!(simple_gread_u32, 0xb0e0e0f, u32);
    g_test!(simple_gread_u64, 0xd0e0a0d0b0e0e0f, u64);
    g_test!(simple_gread_i64, 940700423303335439, i64);

    macro_rules! simple_float_test {
        ($read:ident, $deadbeef:expr, $typ:ty) => {
            #[test]
            fn $read() {
                use super::Pread;
                let bytes: [u8; 8] = [0u8, 0, 0, 0, 0, 0, 224, 63];
                let mut offset = 0;
                let deadbeef: $typ = bytes.gread_with(&mut offset, LE).unwrap();
                assert_eq!(deadbeef, $deadbeef as $typ);
                assert_eq!(offset, ::core::mem::size_of::<$typ>());
            }
        };
    }

    simple_float_test!(gread_f32, 0.0, f32);
    simple_float_test!(gread_f64, 0.5, f64);

    macro_rules! g_read_write_test {
        ($read:ident, $val:expr, $typ:ty) => {
            #[test]
            fn $read() {
                use super::{Pread, Pwrite, BE, LE};
                let mut buffer = [0u8; 16];
                let offset = &mut 0;
                buffer.gwrite_with($val.clone(), offset, LE).unwrap();
                let o2 = &mut 0;
                let val: $typ = buffer.gread_with(o2, LE).unwrap();
                assert_eq!(val, $val);
                assert_eq!(*offset, ::core::mem::size_of::<$typ>());
                assert_eq!(*o2, ::core::mem::size_of::<$typ>());
                assert_eq!(*o2, *offset);
                buffer.gwrite_with($val.clone(), offset, BE).unwrap();
                let val: $typ = buffer.gread_with(o2, BE).unwrap();
                assert_eq!(val, $val);
            }
        };
    }

    g_read_write_test!(gread_gwrite_f64_1, 0.25f64, f64);
    g_read_write_test!(gread_gwrite_f64_2, 0.5f64, f64);
    g_read_write_test!(gread_gwrite_f64_3, 0.064, f64);

    g_read_write_test!(gread_gwrite_f32_1, 0.25f32, f32);
    g_read_write_test!(gread_gwrite_f32_2, 0.5f32, f32);
    g_read_write_test!(gread_gwrite_f32_3, 0.0f32, f32);

    g_read_write_test!(gread_gwrite_i64_1, 0i64, i64);
    g_read_write_test!(gread_gwrite_i64_2, -1213213211111i64, i64);
    g_read_write_test!(gread_gwrite_i64_3, -3000i64, i64);

    g_read_write_test!(gread_gwrite_i32_1, 0i32, i32);
    g_read_write_test!(gread_gwrite_i32_2, -1213213232, i32);
    g_read_write_test!(gread_gwrite_i32_3, -3000i32, i32);

    // useful for ferreting out problems with impls
    #[test]
    fn gread_with_iter_bytes() {
        use super::Pread;
        let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
        let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8];
        let bytes_to = &mut bytes_to[..];
        let bytes_from = &bytes_from[..];
        let mut offset = &mut 0;
        for i in 0..bytes_from.len() {
            bytes_to[i] = bytes_from.gread(&mut offset).unwrap();
        }
        assert_eq!(bytes_to, bytes_from);
        assert_eq!(*offset, bytes_to.len());
    }

    #[test]
    fn gread_inout() {
        use super::Pread;
        let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
        let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8];
        let bytes = &bytes_from[..];
        let offset = &mut 0;
        bytes.gread_inout(offset, &mut bytes_to[..]).unwrap();
        assert_eq!(bytes_to, bytes_from);
        assert_eq!(*offset, bytes_to.len());
    }

    #[test]
    fn gread_with_byte() {
        use super::Pread;
        let bytes: [u8; 1] = [0x7f];
        let b = &bytes[..];
        let offset = &mut 0;
        let byte: u8 = b.gread(offset).unwrap();
        assert_eq!(0x7f, byte);
        assert_eq!(*offset, 1);
    }

    #[test]
    fn gread_slice() {
        use super::ctx::StrCtx;
        use super::Pread;
        let bytes: [u8; 2] = [0x7e, 0xef];
        let b = &bytes[..];
        let offset = &mut 0;
        let res = b.gread_with::<&str>(offset, StrCtx::Length(3));
        assert!(res.is_err());
        *offset = 0;
        let astring: [u8; 3] = [0x45, 0x42, 0x44];
        let string = astring.gread_with::<&str>(offset, StrCtx::Length(2));
        match &string {
            Ok(_) => {}
            Err(_err) => {
                #[cfg(feature = "std")]
                println!("{_err}");
                panic!();
            }
        }
        assert_eq!(string.unwrap(), "EB");
        *offset = 0;
        let bytes2: &[u8] = b.gread_with(offset, 2).unwrap();
        assert_eq!(*offset, 2);
        assert_eq!(bytes2.len(), bytes[..].len());
        for i in 0..bytes2.len() {
            assert_eq!(bytes2[i], bytes[i])
        }
    }

    /////////////////////////////////////////////////////////////////
    // end gread_with
    /////////////////////////////////////////////////////////////////
}