goblin/pe/
authenticode.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// Reference:
//   https://learn.microsoft.com/en-us/windows-hardware/drivers/install/authenticode
//   https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx

// Authenticode works by omiting sections of the PE binary from the digest
// those sections are:
//   - checksum
//   - data directory entry for certtable
//   - certtable

use alloc::collections::VecDeque;
use core::ops::Range;
use log::debug;

use super::{section_table::SectionTable, PE};

static PADDING: [u8; 7] = [0; 7];

impl PE<'_> {
    /// Returns the various ranges of the binary that are relevant for signature.
    pub fn authenticode_ranges(&self) -> ExcludedSectionsIter<'_> {
        ExcludedSectionsIter {
            pe: self,
            state: IterState::default(),
            sections: VecDeque::default(),
        }
    }
}

/// [`ExcludedSections`] holds the various ranges of the binary that are expected to be
/// excluded from the authenticode computation.
#[derive(Debug, Clone, Default)]
pub(super) struct ExcludedSections {
    checksum: Range<usize>,
    datadir_entry_certtable: Range<usize>,
    certificate_table_size: usize,
    end_image_header: usize,
}

impl ExcludedSections {
    pub(super) fn new(
        checksum: Range<usize>,
        datadir_entry_certtable: Range<usize>,
        certificate_table_size: usize,
        end_image_header: usize,
    ) -> Self {
        Self {
            checksum,
            datadir_entry_certtable,
            certificate_table_size,
            end_image_header,
        }
    }
}

pub struct ExcludedSectionsIter<'s> {
    pe: &'s PE<'s>,
    state: IterState,
    sections: VecDeque<SectionTable>,
}

#[derive(Debug, PartialEq)]
enum IterState {
    Initial,
    ChecksumEnd(usize),
    CertificateTableEnd(usize),
    HeaderEnd {
        end_image_header: usize,
        sum_of_bytes_hashed: usize,
    },
    Sections {
        tail: usize,
        sum_of_bytes_hashed: usize,
    },
    Final {
        sum_of_bytes_hashed: usize,
    },
    Padding(usize),
    Done,
}

impl Default for IterState {
    fn default() -> Self {
        Self::Initial
    }
}

impl<'s> Iterator for ExcludedSectionsIter<'s> {
    type Item = &'s [u8];

    fn next(&mut self) -> Option<Self::Item> {
        let bytes = &self.pe.bytes;

        if let Some(sections) = self.pe.authenticode_excluded_sections.as_ref() {
            loop {
                match self.state {
                    IterState::Initial => {
                        // 3. Hash the image header from its base to immediately before the start of the
                        //    checksum address, as specified in Optional Header Windows-Specific Fields.
                        let out = Some(&bytes[..sections.checksum.start]);
                        debug!("hashing {:#x} {:#x}", 0, sections.checksum.start);

                        // 4. Skip over the checksum, which is a 4-byte field.
                        debug_assert_eq!(sections.checksum.end - sections.checksum.start, 4);
                        self.state = IterState::ChecksumEnd(sections.checksum.end);

                        return out;
                    }
                    IterState::ChecksumEnd(checksum_end) => {
                        // 5. Hash everything from the end of the checksum field to immediately before the start
                        //    of the Certificate Table entry, as specified in Optional Header Data Directories.
                        let out =
                            Some(&bytes[checksum_end..sections.datadir_entry_certtable.start]);
                        debug!(
                            "hashing {checksum_end:#x} {:#x}",
                            sections.datadir_entry_certtable.start
                        );

                        // 6. Get the Attribute Certificate Table address and size from the Certificate Table entry.
                        //    For details, see section 5.7 of the PE/COFF specification.
                        // 7. Exclude the Certificate Table entry from the calculation
                        self.state =
                            IterState::CertificateTableEnd(sections.datadir_entry_certtable.end);

                        return out;
                    }
                    IterState::CertificateTableEnd(start) => {
                        // 7. Exclude the Certificate Table entry from the calculation and hash everything from
                        //    the end of the Certificate Table entry to the end of image header, including
                        //    Section Table (headers). The Certificate Table entry is 8 bytes long, as specified
                        //    in Optional Header Data Directories.
                        let end_image_header = sections.end_image_header;
                        let buf = Some(&bytes[start..end_image_header]);
                        debug!("hashing {start:#x} {:#x}", end_image_header - start);

                        // 8. Create a counter called SUM_OF_BYTES_HASHED, which is not part of the signature.
                        //    Set this counter to the SizeOfHeaders field, as specified in
                        //    Optional Header Windows-Specific Field.
                        let sum_of_bytes_hashed = end_image_header;

                        self.state = IterState::HeaderEnd {
                            end_image_header,
                            sum_of_bytes_hashed,
                        };

                        return buf;
                    }
                    IterState::HeaderEnd {
                        end_image_header,
                        sum_of_bytes_hashed,
                    } => {
                        // 9. Build a temporary table of pointers to all of the section headers in the
                        //    image. The NumberOfSections field of COFF File Header indicates how big
                        //    the table should be. Do not include any section headers in the table whose
                        //    SizeOfRawData field is zero.

                        // Implementation detail:
                        // We require allocation here because the section table has a variable size and
                        // needs to be sorted.
                        let mut sections: VecDeque<SectionTable> = self
                            .pe
                            .sections
                            .iter()
                            .filter(|section| section.size_of_raw_data != 0)
                            .cloned()
                            .collect();

                        // 10. Using the PointerToRawData field (offset 20) in the referenced SectionHeader
                        //     structure as a key, arrange the table's elements in ascending order. In
                        //     other words, sort the section headers in ascending order according to the
                        //     disk-file offset of the sections.
                        sections
                            .make_contiguous()
                            .sort_by_key(|section| section.pointer_to_raw_data);

                        self.sections = sections;

                        self.state = IterState::Sections {
                            tail: end_image_header,
                            sum_of_bytes_hashed,
                        };
                    }
                    IterState::Sections {
                        mut tail,
                        mut sum_of_bytes_hashed,
                    } => {
                        // 11. Walk through the sorted table, load the corresponding section into memory,
                        //     and hash the entire section. Use the SizeOfRawData field in the SectionHeader
                        //     structure to determine the amount of data to hash.
                        if let Some(section) = self.sections.pop_front() {
                            let start = section.pointer_to_raw_data as usize;
                            let end = start + section.size_of_raw_data as usize;
                            tail = end;

                            // 12. Add the section’s SizeOfRawData value to SUM_OF_BYTES_HASHED.
                            sum_of_bytes_hashed += section.size_of_raw_data as usize;

                            debug!("hashing {start:#x} {:#x}", end - start);
                            let buf = &bytes[start..end];

                            // 13. Repeat steps 11 and 12 for all of the sections in the sorted table.
                            self.state = IterState::Sections {
                                tail,
                                sum_of_bytes_hashed,
                            };

                            return Some(buf);
                        } else {
                            self.state = IterState::Final {
                                sum_of_bytes_hashed,
                            };
                        }
                    }
                    IterState::Final {
                        sum_of_bytes_hashed,
                    } => {
                        // 14. Create a value called FILE_SIZE, which is not part of the signature.
                        //     Set this value to the image’s file size, acquired from the underlying
                        //     file system. If FILE_SIZE is greater than SUM_OF_BYTES_HASHED, the
                        //     file contains extra data that must be added to the hash. This data
                        //     begins at the SUM_OF_BYTES_HASHED file offset, and its length is:
                        //       (File Size) - ((Size of AttributeCertificateTable) + SUM_OF_BYTES_HASHED)
                        //
                        // Note: The size of Attribute Certificate Table is specified in the second
                        //       ULONG value in the Certificate Table entry (32 bit: offset 132,
                        //       64 bit: offset 148) in Optional Header Data Directories.
                        let file_size = bytes.len();

                        // If FILE_SIZE is not a multiple of 8 bytes, the data added to the hash must
                        // be appended with zero padding of length (8 – (FILE_SIZE % 8)) bytes
                        let pad_size = (8 - file_size % 8) % 8;
                        self.state = IterState::Padding(pad_size);

                        if file_size > sum_of_bytes_hashed {
                            let extra_data_start = sum_of_bytes_hashed;
                            let len =
                                file_size - sections.certificate_table_size - sum_of_bytes_hashed;

                            debug!("hashing {extra_data_start:#x} {len:#x}",);
                            let buf = &bytes[extra_data_start..extra_data_start + len];

                            return Some(buf);
                        }
                    }
                    IterState::Padding(pad_size) => {
                        self.state = IterState::Done;

                        if pad_size != 0 {
                            debug!("hashing {pad_size:#x}");

                            // NOTE (safety): pad size will be at most 7, and PADDING has a size of 7
                            //                pad_size is computed ~10 lines above.
                            debug_assert!(pad_size <= 7);
                            debug_assert_eq!(PADDING.len(), 7);

                            return Some(&PADDING[..pad_size]);
                        }
                    }
                    IterState::Done => return None,
                }
            }
        } else {
            loop {
                match self.state {
                    IterState::Initial => {
                        self.state = IterState::Done;
                        return Some(bytes);
                    }
                    IterState::Done => return None,
                    _ => {
                        self.state = IterState::Done;
                    }
                }
            }
        }
    }
}