goblin/pe/authenticode.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
// Reference:
// https://learn.microsoft.com/en-us/windows-hardware/drivers/install/authenticode
// https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
// Authenticode works by omiting sections of the PE binary from the digest
// those sections are:
// - checksum
// - data directory entry for certtable
// - certtable
use alloc::collections::VecDeque;
use core::ops::Range;
use log::debug;
use super::{section_table::SectionTable, PE};
static PADDING: [u8; 7] = [0; 7];
impl PE<'_> {
/// Returns the various ranges of the binary that are relevant for signature.
pub fn authenticode_ranges(&self) -> ExcludedSectionsIter<'_> {
ExcludedSectionsIter {
pe: self,
state: IterState::default(),
sections: VecDeque::default(),
}
}
}
/// [`ExcludedSections`] holds the various ranges of the binary that are expected to be
/// excluded from the authenticode computation.
#[derive(Debug, Clone, Default)]
pub(super) struct ExcludedSections {
checksum: Range<usize>,
datadir_entry_certtable: Range<usize>,
certificate_table_size: usize,
end_image_header: usize,
}
impl ExcludedSections {
pub(super) fn new(
checksum: Range<usize>,
datadir_entry_certtable: Range<usize>,
certificate_table_size: usize,
end_image_header: usize,
) -> Self {
Self {
checksum,
datadir_entry_certtable,
certificate_table_size,
end_image_header,
}
}
}
pub struct ExcludedSectionsIter<'s> {
pe: &'s PE<'s>,
state: IterState,
sections: VecDeque<SectionTable>,
}
#[derive(Debug, PartialEq)]
enum IterState {
Initial,
ChecksumEnd(usize),
CertificateTableEnd(usize),
HeaderEnd {
end_image_header: usize,
sum_of_bytes_hashed: usize,
},
Sections {
tail: usize,
sum_of_bytes_hashed: usize,
},
Final {
sum_of_bytes_hashed: usize,
},
Padding(usize),
Done,
}
impl Default for IterState {
fn default() -> Self {
Self::Initial
}
}
impl<'s> Iterator for ExcludedSectionsIter<'s> {
type Item = &'s [u8];
fn next(&mut self) -> Option<Self::Item> {
let bytes = &self.pe.bytes;
if let Some(sections) = self.pe.authenticode_excluded_sections.as_ref() {
loop {
match self.state {
IterState::Initial => {
// 3. Hash the image header from its base to immediately before the start of the
// checksum address, as specified in Optional Header Windows-Specific Fields.
let out = Some(&bytes[..sections.checksum.start]);
debug!("hashing {:#x} {:#x}", 0, sections.checksum.start);
// 4. Skip over the checksum, which is a 4-byte field.
debug_assert_eq!(sections.checksum.end - sections.checksum.start, 4);
self.state = IterState::ChecksumEnd(sections.checksum.end);
return out;
}
IterState::ChecksumEnd(checksum_end) => {
// 5. Hash everything from the end of the checksum field to immediately before the start
// of the Certificate Table entry, as specified in Optional Header Data Directories.
let out =
Some(&bytes[checksum_end..sections.datadir_entry_certtable.start]);
debug!(
"hashing {checksum_end:#x} {:#x}",
sections.datadir_entry_certtable.start
);
// 6. Get the Attribute Certificate Table address and size from the Certificate Table entry.
// For details, see section 5.7 of the PE/COFF specification.
// 7. Exclude the Certificate Table entry from the calculation
self.state =
IterState::CertificateTableEnd(sections.datadir_entry_certtable.end);
return out;
}
IterState::CertificateTableEnd(start) => {
// 7. Exclude the Certificate Table entry from the calculation and hash everything from
// the end of the Certificate Table entry to the end of image header, including
// Section Table (headers). The Certificate Table entry is 8 bytes long, as specified
// in Optional Header Data Directories.
let end_image_header = sections.end_image_header;
let buf = Some(&bytes[start..end_image_header]);
debug!("hashing {start:#x} {:#x}", end_image_header - start);
// 8. Create a counter called SUM_OF_BYTES_HASHED, which is not part of the signature.
// Set this counter to the SizeOfHeaders field, as specified in
// Optional Header Windows-Specific Field.
let sum_of_bytes_hashed = end_image_header;
self.state = IterState::HeaderEnd {
end_image_header,
sum_of_bytes_hashed,
};
return buf;
}
IterState::HeaderEnd {
end_image_header,
sum_of_bytes_hashed,
} => {
// 9. Build a temporary table of pointers to all of the section headers in the
// image. The NumberOfSections field of COFF File Header indicates how big
// the table should be. Do not include any section headers in the table whose
// SizeOfRawData field is zero.
// Implementation detail:
// We require allocation here because the section table has a variable size and
// needs to be sorted.
let mut sections: VecDeque<SectionTable> = self
.pe
.sections
.iter()
.filter(|section| section.size_of_raw_data != 0)
.cloned()
.collect();
// 10. Using the PointerToRawData field (offset 20) in the referenced SectionHeader
// structure as a key, arrange the table's elements in ascending order. In
// other words, sort the section headers in ascending order according to the
// disk-file offset of the sections.
sections
.make_contiguous()
.sort_by_key(|section| section.pointer_to_raw_data);
self.sections = sections;
self.state = IterState::Sections {
tail: end_image_header,
sum_of_bytes_hashed,
};
}
IterState::Sections {
mut tail,
mut sum_of_bytes_hashed,
} => {
// 11. Walk through the sorted table, load the corresponding section into memory,
// and hash the entire section. Use the SizeOfRawData field in the SectionHeader
// structure to determine the amount of data to hash.
if let Some(section) = self.sections.pop_front() {
let start = section.pointer_to_raw_data as usize;
let end = start + section.size_of_raw_data as usize;
tail = end;
// 12. Add the section’s SizeOfRawData value to SUM_OF_BYTES_HASHED.
sum_of_bytes_hashed += section.size_of_raw_data as usize;
debug!("hashing {start:#x} {:#x}", end - start);
let buf = &bytes[start..end];
// 13. Repeat steps 11 and 12 for all of the sections in the sorted table.
self.state = IterState::Sections {
tail,
sum_of_bytes_hashed,
};
return Some(buf);
} else {
self.state = IterState::Final {
sum_of_bytes_hashed,
};
}
}
IterState::Final {
sum_of_bytes_hashed,
} => {
// 14. Create a value called FILE_SIZE, which is not part of the signature.
// Set this value to the image’s file size, acquired from the underlying
// file system. If FILE_SIZE is greater than SUM_OF_BYTES_HASHED, the
// file contains extra data that must be added to the hash. This data
// begins at the SUM_OF_BYTES_HASHED file offset, and its length is:
// (File Size) - ((Size of AttributeCertificateTable) + SUM_OF_BYTES_HASHED)
//
// Note: The size of Attribute Certificate Table is specified in the second
// ULONG value in the Certificate Table entry (32 bit: offset 132,
// 64 bit: offset 148) in Optional Header Data Directories.
let file_size = bytes.len();
// If FILE_SIZE is not a multiple of 8 bytes, the data added to the hash must
// be appended with zero padding of length (8 – (FILE_SIZE % 8)) bytes
let pad_size = (8 - file_size % 8) % 8;
self.state = IterState::Padding(pad_size);
if file_size > sum_of_bytes_hashed {
let extra_data_start = sum_of_bytes_hashed;
let len =
file_size - sections.certificate_table_size - sum_of_bytes_hashed;
debug!("hashing {extra_data_start:#x} {len:#x}",);
let buf = &bytes[extra_data_start..extra_data_start + len];
return Some(buf);
}
}
IterState::Padding(pad_size) => {
self.state = IterState::Done;
if pad_size != 0 {
debug!("hashing {pad_size:#x}");
// NOTE (safety): pad size will be at most 7, and PADDING has a size of 7
// pad_size is computed ~10 lines above.
debug_assert!(pad_size <= 7);
debug_assert_eq!(PADDING.len(), 7);
return Some(&PADDING[..pad_size]);
}
}
IterState::Done => return None,
}
}
} else {
loop {
match self.state {
IterState::Initial => {
self.state = IterState::Done;
return Some(bytes);
}
IterState::Done => return None,
_ => {
self.state = IterState::Done;
}
}
}
}
}
}