ruint/
log.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#![cfg(feature = "std")]

use crate::Uint;

impl<const BITS: usize, const LIMBS: usize> Uint<BITS, LIMBS> {
    /// Returns the logarithm of the number, rounded down.
    ///
    /// Returns None if the base is less than two, or this number is zero.
    #[inline]
    #[must_use]
    pub fn checked_log(self, base: Self) -> Option<usize> {
        if base < Self::from(2) || self == Self::ZERO {
            return None;
        }
        Some(self.log(base))
    }

    /// Returns the base 10 logarithm of the number, rounded down.
    ///
    /// Returns None if the number is zero.
    #[inline]
    #[must_use]
    pub fn checked_log10(self) -> Option<usize> {
        self.checked_log(Self::from(10))
    }

    /// Returns the base 2 logarithm of the number, rounded down.
    ///
    /// This is equivalent to the index of the highest set bit.
    ///
    /// Returns None if the number is zero.
    #[inline]
    #[must_use]
    pub fn checked_log2(self) -> Option<usize> {
        self.checked_log(Self::from(2))
    }

    /// Returns the logarithm of the number, rounded down.
    ///
    /// # Panics
    ///
    /// Panics if the `base` is less than 2 or if the number is zero.
    #[inline]
    #[must_use]
    pub fn log(self, base: Self) -> usize {
        assert!(self != Self::ZERO);
        assert!(base >= Self::from(2));
        if base == Self::from(2) {
            return self.bit_len() - 1;
        }
        if self < base {
            return 0;
        }

        // Find approximate result
        #[allow(clippy::cast_precision_loss)] // Casting base to `f64` is fine.
        let result = self.approx_log2() / base.approx_log2();
        // We handled edge cases above, so the result should be normal and fit `Self`.
        assert!(result.is_normal());
        let mut result = result.try_into().unwrap();

        // Adjust result to get the exact value. At most one of these should happen, but
        // we loop regardless.
        loop {
            if let Some(value) = base.checked_pow(result) {
                if value > self {
                    assert!(result != Self::ZERO);
                    result -= Self::from(1);
                    continue;
                }
            } else {
                // Overflow, so definitely larger than `value`
                result -= Self::from(1);
            }
            break;
        }
        while let Some(trial) = result.checked_add(Self::from(1)) {
            if let Some(value) = base.checked_pow(trial) {
                if value <= self {
                    result = trial;
                    continue;
                }
            }
            break;
        }

        // Should always be possible.
        result.to()
    }

    /// Returns the base 10 logarithm of the number, rounded down.
    ///
    /// # Panics
    ///
    /// Panics if the `base` if the number is zero.
    #[inline]
    #[must_use]
    pub fn log10(self) -> usize {
        self.log(Self::from(10))
    }

    /// Returns the base 2 logarithm of the number, rounded down.
    ///
    /// # Panics
    ///
    /// Panics if the `base` if the number is zero.
    #[inline]
    #[must_use]
    pub fn log2(self) -> usize {
        self.log(Self::from(2))
    }

    /// Double precision logarithm.
    #[inline]
    #[must_use]
    pub fn approx_log(self, base: f64) -> f64 {
        self.approx_log2() / base.log2()
    }

    /// Double precision binary logarithm.
    ///
    /// # Examples
    ///
    /// ```
    /// # use ruint::{Uint, uint, aliases::*};
    /// # uint!{
    /// assert_eq!(0_U64.approx_log2(), f64::NEG_INFINITY);
    /// assert_eq!(1_U64.approx_log2(), 0.0);
    /// assert_eq!(2_U64.approx_log2(), 1.0);
    /// assert_eq!(U64::MAX.approx_log2(), 64.0);
    /// # }
    /// ```
    #[inline]
    #[must_use]
    #[allow(clippy::cast_precision_loss)]
    pub fn approx_log2(self) -> f64 {
        // The naive solution would be `f64::from(self).log2()`, but
        // `f64::from(self)` quickly overflows (`f64::MAX` is 2^1024).
        // So instead we first approximate as `bits * 2^exp` and then
        // compute using`log2(bits * 2^exp) = log2(bits) + exp`
        let (bits, exp) = self.most_significant_bits();
        // Convert to floats
        let bits = bits as f64;
        let exp = exp as f64;
        bits.log2() + exp
    }

    /// Double precision decimal logarithm.
    #[inline]
    #[must_use]
    pub fn approx_log10(self) -> f64 {
        self.approx_log2() / core::f64::consts::LOG2_10
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{aliases::U128, const_for, nlimbs};
    use proptest::{prop_assume, proptest};

    #[test]
    fn test_checked_log2() {
        assert_eq!(U128::from(0).checked_log2(), None);
        assert_eq!(U128::from(1).checked_log2(), Some(0));
        assert_eq!(U128::from(2).checked_log2(), Some(1));
        assert_eq!(U128::from(3).checked_log2(), Some(1));
        assert_eq!(U128::from(127).checked_log2(), Some(6));
        assert_eq!(U128::from(128).checked_log2(), Some(7));
    }

    #[test]
    fn test_approx_log2_pow2() {
        const_for!(BITS in SIZES {
            const LIMBS: usize = nlimbs(BITS);
            type U = Uint<BITS, LIMBS>;
            proptest!(|(value: U)| {
                let log = value.approx_log2();
                let pow = U::approx_pow2(log).unwrap();
                let error = value.abs_diff(pow);
                let correct_bits = value.bit_len() - error.bit_len();
                // The maximum precision we could expect here is 53 bits.
                // OPT: Find out exactly where the precision is lost and what
                // the bounds are.
                assert!(correct_bits == value.bit_len() || correct_bits >= 42);
            });
        });
    }

    #[test]
    fn test_pow_log() {
        const_for!(BITS in NON_ZERO if (BITS >= 64) {
            const LIMBS: usize = nlimbs(BITS);
            type U = Uint<BITS, LIMBS>;
            proptest!(|(b in 2_u64..100, e in 0..BITS)| {
                if let Some(value) = U::from(b).checked_pow(U::from(e)) {
                    assert!(value > U::ZERO);
                    assert_eq!(value.log(U::from(b)), e);
                    // assert_eq!(value.log(b + U::from(1)), e as u64);
                }
            });
        });
    }

    #[test]
    fn test_log_pow() {
        const_for!(BITS in NON_ZERO if (BITS >= 64) {
            const LIMBS: usize = nlimbs(BITS);
            type U = Uint<BITS, LIMBS>;
            proptest!(|(b in 2_u64..100, n: U)| {
                prop_assume!(n > U::ZERO);
                let e = n.log(U::from(b));
                assert!(U::from(b).pow(U::from(e)) <= n);
                if let Some(value) = U::from(b).checked_pow(U::from(e + 1)) {
                    assert!(value > n);
                }
            });
        });
    }
}