halo2_axiom/plonk/circuit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
use super::{lookup, permutation, Assigned, Error};
use crate::circuit::layouter::SyncDeps;
use crate::dev::metadata;
use crate::{
circuit::{Layouter, Region, Value},
poly::Rotation,
};
use core::cmp::max;
use core::ops::{Add, Mul};
use ff::Field;
use itertools::Itertools;
use sealed::SealedPhase;
use std::collections::HashMap;
use std::env::var;
use std::fmt::Debug;
use std::{
convert::TryFrom,
ops::{Neg, Sub},
};
mod compress_selectors;
/// A column type
pub trait ColumnType:
'static + Sized + Copy + std::fmt::Debug + PartialEq + Eq + Into<Any>
{
/// Return expression from cell
fn query_cell<F: Field>(&self, index: usize, at: Rotation) -> Expression<F>;
}
/// A column with an index and type
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct Column<C: ColumnType> {
index: usize,
column_type: C,
}
impl<C: ColumnType> Column<C> {
#[cfg(test)]
pub fn new(index: usize, column_type: C) -> Self {
Column { index, column_type }
}
/// Index of this column.
pub fn index(&self) -> usize {
self.index
}
/// Type of this column.
pub fn column_type(&self) -> &C {
&self.column_type
}
/// Return expression from column at a relative position
pub fn query_cell<F: Field>(&self, at: Rotation) -> Expression<F> {
self.column_type.query_cell(self.index, at)
}
/// Return expression from column at the current row
pub fn cur<F: Field>(&self) -> Expression<F> {
self.query_cell(Rotation::cur())
}
/// Return expression from column at the next row
pub fn next<F: Field>(&self) -> Expression<F> {
self.query_cell(Rotation::next())
}
/// Return expression from column at the previous row
pub fn prev<F: Field>(&self) -> Expression<F> {
self.query_cell(Rotation::prev())
}
/// Return expression from column at the specified rotation
pub fn rot<F: Field>(&self, rotation: i32) -> Expression<F> {
self.query_cell(Rotation(rotation))
}
}
impl<C: ColumnType> Ord for Column<C> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
// This ordering is consensus-critical! The layouters rely on deterministic column
// orderings.
match self.column_type.into().cmp(&other.column_type.into()) {
// Indices are assigned within column types.
std::cmp::Ordering::Equal => self.index.cmp(&other.index),
order => order,
}
}
}
impl<C: ColumnType> PartialOrd for Column<C> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
pub(crate) mod sealed {
/// Phase of advice column
#[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Phase(pub(super) u8);
impl Phase {
pub fn prev(&self) -> Option<Phase> {
self.0.checked_sub(1).map(Phase)
}
pub fn next(&self) -> Phase {
assert!(self.0 < 2, "The API only supports three phases");
Phase(self.0 + 1)
}
#[allow(clippy::wrong_self_convention)]
pub fn to_u8(&self) -> u8 {
self.0
}
}
impl SealedPhase for Phase {
fn to_sealed(self) -> Phase {
self
}
}
/// Sealed trait to help keep `Phase` private.
pub trait SealedPhase {
fn to_sealed(self) -> Phase;
}
}
/// Phase of advice column
pub trait Phase: SealedPhase {}
impl<P: SealedPhase> Phase for P {}
/// First phase
#[derive(Debug)]
pub struct FirstPhase;
impl SealedPhase for super::FirstPhase {
fn to_sealed(self) -> sealed::Phase {
sealed::Phase(0)
}
}
/// Second phase
#[derive(Debug)]
pub struct SecondPhase;
impl SealedPhase for super::SecondPhase {
fn to_sealed(self) -> sealed::Phase {
sealed::Phase(1)
}
}
/// Third phase
#[derive(Debug)]
pub struct ThirdPhase;
impl SealedPhase for super::ThirdPhase {
fn to_sealed(self) -> sealed::Phase {
sealed::Phase(2)
}
}
/// An advice column
#[derive(Clone, Copy, Eq, PartialEq, Hash)]
pub struct Advice {
pub(crate) phase: sealed::Phase,
}
impl Default for Advice {
fn default() -> Advice {
Advice {
phase: FirstPhase.to_sealed(),
}
}
}
impl Advice {
/// Returns `Advice` in given `Phase`
pub fn new<P: Phase>(phase: P) -> Advice {
Advice {
phase: phase.to_sealed(),
}
}
/// Phase of this column
pub fn phase(&self) -> u8 {
self.phase.0
}
}
impl std::fmt::Debug for Advice {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut debug_struct = f.debug_struct("Advice");
// Only show advice's phase if it's not in first phase.
if self.phase != FirstPhase.to_sealed() {
debug_struct.field("phase", &self.phase);
}
debug_struct.finish()
}
}
/// A fixed column
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct Fixed;
/// An instance column
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct Instance;
/// An enum over the Advice, Fixed, Instance structs
#[derive(Clone, Copy, Eq, PartialEq, Hash)]
pub enum Any {
/// An Advice variant
Advice(Advice),
/// A Fixed variant
Fixed,
/// An Instance variant
Instance,
}
impl Any {
/// Returns Advice variant in `FirstPhase`
pub fn advice() -> Any {
Any::Advice(Advice::default())
}
/// Returns Advice variant in given `Phase`
pub fn advice_in<P: Phase>(phase: P) -> Any {
Any::Advice(Advice::new(phase))
}
}
impl std::fmt::Debug for Any {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Any::Advice(advice) => {
let mut debug_struct = f.debug_struct("Advice");
// Only show advice's phase if it's not in first phase.
if advice.phase != FirstPhase.to_sealed() {
debug_struct.field("phase", &advice.phase);
}
debug_struct.finish()
}
Any::Fixed => f.debug_struct("Fixed").finish(),
Any::Instance => f.debug_struct("Instance").finish(),
}
}
}
impl Ord for Any {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
// This ordering is consensus-critical! The layouters rely on deterministic column
// orderings.
match (self, other) {
(Any::Instance, Any::Instance) | (Any::Fixed, Any::Fixed) => std::cmp::Ordering::Equal,
(Any::Advice(lhs), Any::Advice(rhs)) => lhs.phase.cmp(&rhs.phase),
// Across column types, sort Instance < Advice < Fixed.
(Any::Instance, Any::Advice(_))
| (Any::Advice(_), Any::Fixed)
| (Any::Instance, Any::Fixed) => std::cmp::Ordering::Less,
(Any::Fixed, Any::Instance)
| (Any::Fixed, Any::Advice(_))
| (Any::Advice(_), Any::Instance) => std::cmp::Ordering::Greater,
}
}
}
impl PartialOrd for Any {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl ColumnType for Advice {
fn query_cell<F: Field>(&self, index: usize, at: Rotation) -> Expression<F> {
Expression::Advice(AdviceQuery {
index: None,
column_index: index,
rotation: at,
phase: self.phase,
})
}
}
impl ColumnType for Fixed {
fn query_cell<F: Field>(&self, index: usize, at: Rotation) -> Expression<F> {
Expression::Fixed(FixedQuery {
index: None,
column_index: index,
rotation: at,
})
}
}
impl ColumnType for Instance {
fn query_cell<F: Field>(&self, index: usize, at: Rotation) -> Expression<F> {
Expression::Instance(InstanceQuery {
index: None,
column_index: index,
rotation: at,
})
}
}
impl ColumnType for Any {
fn query_cell<F: Field>(&self, index: usize, at: Rotation) -> Expression<F> {
match self {
Any::Advice(Advice { phase }) => Expression::Advice(AdviceQuery {
index: None,
column_index: index,
rotation: at,
phase: *phase,
}),
Any::Fixed => Expression::Fixed(FixedQuery {
index: None,
column_index: index,
rotation: at,
}),
Any::Instance => Expression::Instance(InstanceQuery {
index: None,
column_index: index,
rotation: at,
}),
}
}
}
impl From<Advice> for Any {
fn from(advice: Advice) -> Any {
Any::Advice(advice)
}
}
impl From<Fixed> for Any {
fn from(_: Fixed) -> Any {
Any::Fixed
}
}
impl From<Instance> for Any {
fn from(_: Instance) -> Any {
Any::Instance
}
}
impl From<Column<Advice>> for Column<Any> {
fn from(advice: Column<Advice>) -> Column<Any> {
Column {
index: advice.index(),
column_type: Any::Advice(advice.column_type),
}
}
}
impl From<Column<Fixed>> for Column<Any> {
fn from(advice: Column<Fixed>) -> Column<Any> {
Column {
index: advice.index(),
column_type: Any::Fixed,
}
}
}
impl From<Column<Instance>> for Column<Any> {
fn from(advice: Column<Instance>) -> Column<Any> {
Column {
index: advice.index(),
column_type: Any::Instance,
}
}
}
impl TryFrom<Column<Any>> for Column<Advice> {
type Error = &'static str;
fn try_from(any: Column<Any>) -> Result<Self, Self::Error> {
match any.column_type() {
Any::Advice(advice) => Ok(Column {
index: any.index(),
column_type: *advice,
}),
_ => Err("Cannot convert into Column<Advice>"),
}
}
}
impl TryFrom<Column<Any>> for Column<Fixed> {
type Error = &'static str;
fn try_from(any: Column<Any>) -> Result<Self, Self::Error> {
match any.column_type() {
Any::Fixed => Ok(Column {
index: any.index(),
column_type: Fixed,
}),
_ => Err("Cannot convert into Column<Fixed>"),
}
}
}
impl TryFrom<Column<Any>> for Column<Instance> {
type Error = &'static str;
fn try_from(any: Column<Any>) -> Result<Self, Self::Error> {
match any.column_type() {
Any::Instance => Ok(Column {
index: any.index(),
column_type: Instance,
}),
_ => Err("Cannot convert into Column<Instance>"),
}
}
}
/// A selector, representing a fixed boolean value per row of the circuit.
///
/// Selectors can be used to conditionally enable (portions of) gates:
/// ```
/// use halo2_axiom::poly::Rotation;
/// # use halo2curves::pasta::Fp;
/// # use halo2_axiom::plonk::ConstraintSystem;
///
/// # let mut meta = ConstraintSystem::<Fp>::default();
/// let a = meta.advice_column();
/// let b = meta.advice_column();
/// let s = meta.selector();
///
/// meta.create_gate("foo", |meta| {
/// let a = meta.query_advice(a, Rotation::prev());
/// let b = meta.query_advice(b, Rotation::cur());
/// let s = meta.query_selector(s);
///
/// // On rows where the selector is enabled, a is constrained to equal b.
/// // On rows where the selector is disabled, a and b can take any value.
/// vec![s * (a - b)]
/// });
/// ```
///
/// Selectors are disabled on all rows by default, and must be explicitly enabled on each
/// row when required:
/// ```
/// use halo2_axiom::{
/// circuit::{Chip, Layouter, Value},
/// plonk::{Advice, Column, Error, Selector},
/// };
/// use ff::Field;
/// # use halo2_axiom::plonk::Fixed;
///
/// struct Config {
/// a: Column<Advice>,
/// b: Column<Advice>,
/// s: Selector,
/// }
///
/// fn circuit_logic<F: Field, C: Chip<F>>(chip: C, mut layouter: impl Layouter<F>) -> Result<(), Error> {
/// let config = chip.config();
/// # let config: Config = todo!();
/// layouter.assign_region(|| "bar", |mut region| {
/// region.assign_advice(config.a, 0, Value::known(F::ONE));
/// region.assign_advice(config.b, 1, Value::known(F::ONE));
/// config.s.enable(&mut region, 1)
/// })?;
/// Ok(())
/// }
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct Selector(pub(crate) usize, bool);
impl Selector {
/// Enable this selector at the given offset within the given region.
pub fn enable<F: Field>(&self, region: &mut Region<F>, offset: usize) -> Result<(), Error> {
region.enable_selector(|| "", self, offset)
}
/// Is this selector "simple"? Simple selectors can only be multiplied
/// by expressions that contain no other simple selectors.
pub fn is_simple(&self) -> bool {
self.1
}
/// Returns index of this selector
pub fn index(&self) -> usize {
self.0
}
/// Return expression from selector
pub fn expr<F: Field>(&self) -> Expression<F> {
Expression::Selector(*self)
}
}
/// Query of fixed column at a certain relative location
#[derive(Copy, Clone, Debug)]
pub struct FixedQuery {
/// Query index
pub(crate) index: Option<usize>,
/// Column index
pub(crate) column_index: usize,
/// Rotation of this query
pub(crate) rotation: Rotation,
}
impl FixedQuery {
/// Column index
pub fn column_index(&self) -> usize {
self.column_index
}
/// Rotation of this query
pub fn rotation(&self) -> Rotation {
self.rotation
}
}
/// Query of advice column at a certain relative location
#[derive(Copy, Clone, Debug)]
pub struct AdviceQuery {
/// Query index
pub(crate) index: Option<usize>,
/// Column index
pub(crate) column_index: usize,
/// Rotation of this query
pub(crate) rotation: Rotation,
/// Phase of this advice column
pub(crate) phase: sealed::Phase,
}
impl AdviceQuery {
/// Column index
pub fn column_index(&self) -> usize {
self.column_index
}
/// Rotation of this query
pub fn rotation(&self) -> Rotation {
self.rotation
}
/// Phase of this advice column
pub fn phase(&self) -> u8 {
self.phase.0
}
}
/// Query of instance column at a certain relative location
#[derive(Copy, Clone, Debug)]
pub struct InstanceQuery {
/// Query index
pub(crate) index: Option<usize>,
/// Column index
pub(crate) column_index: usize,
/// Rotation of this query
pub(crate) rotation: Rotation,
}
impl InstanceQuery {
/// Column index
pub fn column_index(&self) -> usize {
self.column_index
}
/// Rotation of this query
pub fn rotation(&self) -> Rotation {
self.rotation
}
}
/// A fixed column of a lookup table.
///
/// A lookup table can be loaded into this column via [`Layouter::assign_table`]. Columns
/// can currently only contain a single table, but they may be used in multiple lookup
/// arguments via [`ConstraintSystem::lookup`].
///
/// Lookup table columns are always "encumbered" by the lookup arguments they are used in;
/// they cannot simultaneously be used as general fixed columns.
///
/// [`Layouter::assign_table`]: crate::circuit::Layouter::assign_table
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct TableColumn {
/// The fixed column that this table column is stored in.
///
/// # Security
///
/// This inner column MUST NOT be exposed in the public API, or else chip developers
/// can load lookup tables into their circuits without default-value-filling the
/// columns, which can cause soundness bugs.
inner: Column<Fixed>,
}
impl TableColumn {
/// Returns inner column
pub fn inner(&self) -> Column<Fixed> {
self.inner
}
}
/// A challenge squeezed from transcript after advice columns at the phase have been committed.
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct Challenge {
index: usize,
pub(crate) phase: sealed::Phase,
}
impl Challenge {
/// Index of this challenge.
pub fn index(&self) -> usize {
self.index
}
/// Phase of this challenge.
pub fn phase(&self) -> u8 {
self.phase.0
}
/// Return Expression
pub fn expr<F: Field>(&self) -> Expression<F> {
Expression::Challenge(*self)
}
}
/// This trait allows a [`Circuit`] to direct some backend to assign a witness
/// for a constraint system.
pub trait Assignment<F: Field> {
/// Creates a new region and enters into it.
///
/// Panics if we are currently in a region (if `exit_region` was not called).
///
/// Not intended for downstream consumption; use [`Layouter::assign_region`] instead.
///
/// [`Layouter::assign_region`]: crate::circuit::Layouter#method.assign_region
fn enter_region<NR, N>(&mut self, name_fn: N)
where
NR: Into<String>,
N: FnOnce() -> NR;
/// Allows the developer to include an annotation for an specific column within a `Region`.
///
/// This is usually useful for debugging circuit failures.
fn annotate_column<A, AR>(&mut self, annotation: A, column: Column<Any>)
where
A: FnOnce() -> AR,
AR: Into<String>;
/// Exits the current region.
///
/// Panics if we are not currently in a region (if `enter_region` was not called).
///
/// Not intended for downstream consumption; use [`Layouter::assign_region`] instead.
///
/// [`Layouter::assign_region`]: crate::circuit::Layouter#method.assign_region
fn exit_region(&mut self);
/// Enables a selector at the given row.
fn enable_selector<A, AR>(
&mut self,
annotation: A,
selector: &Selector,
row: usize,
) -> Result<(), Error>
where
A: FnOnce() -> AR,
AR: Into<String>;
/// Queries the cell of an instance column at a particular absolute row.
///
/// Returns the cell's value, if known.
fn query_instance(&self, column: Column<Instance>, row: usize) -> Result<Value<F>, Error>;
/// Assign an advice column value (witness)
fn assign_advice<'v>(
&mut self,
column: Column<Advice>,
row: usize,
to: Value<Assigned<F>>,
) -> Value<&'v Assigned<F>>;
/// Assign a fixed value
fn assign_fixed(&mut self, column: Column<Fixed>, row: usize, to: Assigned<F>);
/// Assign two cells to have the same value
fn copy(
&mut self,
left_column: Column<Any>,
left_row: usize,
right_column: Column<Any>,
right_row: usize,
);
/// Fills a fixed `column` starting from the given `row` with value `to`.
fn fill_from_row(
&mut self,
column: Column<Fixed>,
row: usize,
to: Value<Assigned<F>>,
) -> Result<(), Error>;
/// Queries the value of the given challenge.
///
/// Returns `Value::unknown()` if the current synthesis phase is before the challenge can be queried.
fn get_challenge(&self, challenge: Challenge) -> Value<F>;
/// Creates a new (sub)namespace and enters into it.
///
/// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
///
/// [`Layouter::namespace`]: crate::circuit::Layouter#method.namespace
fn push_namespace<NR, N>(&mut self, name_fn: N)
where
NR: Into<String>,
N: FnOnce() -> NR;
/// Exits out of the existing namespace.
///
/// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
///
/// [`Layouter::namespace`]: crate::circuit::Layouter#method.namespace
fn pop_namespace(&mut self, gadget_name: Option<String>);
/// Commit advice columns in current phase and squeeze challenges. This can be
/// called DURING synthesize.
fn next_phase(&mut self) {}
}
/// A floor planning strategy for a circuit.
///
/// The floor planner is chip-agnostic and applies its strategy to the circuit it is used
/// within.
pub trait FloorPlanner {
/// Given the provided `cs`, synthesize the given circuit.
///
/// `constants` is the list of fixed columns that the layouter may use to assign
/// global constant values. These columns will all have been equality-enabled.
///
/// Internally, a floor planner will perform the following operations:
/// - Instantiate a [`Layouter`] for this floor planner.
/// - Perform any necessary setup or measurement tasks, which may involve one or more
/// calls to `Circuit::default().synthesize(config, &mut layouter)`.
/// - Call `circuit.synthesize(config, &mut layouter)` exactly once.
fn synthesize<F: Field, CS: Assignment<F> + SyncDeps, C: Circuit<F>>(
cs: &mut CS,
circuit: &C,
config: C::Config,
constants: Vec<Column<Fixed>>,
) -> Result<(), Error>;
}
/// This is a trait that circuits provide implementations for so that the
/// backend prover can ask the circuit to synthesize using some given
/// [`ConstraintSystem`] implementation.
pub trait Circuit<F: Field> {
/// This is a configuration object that stores things like columns.
type Config: Clone;
/// The floor planner used for this circuit. This is an associated type of the
/// `Circuit` trait because its behaviour is circuit-critical.
type FloorPlanner: FloorPlanner;
/// Optional circuit configuration parameters. Requires the `circuit-params` feature.
#[cfg(feature = "circuit-params")]
type Params: Default = ();
/// Returns a copy of this circuit with no witness values (i.e. all witnesses set to
/// `None`). For most circuits, this will be equal to `Self::default()`.
fn without_witnesses(&self) -> Self;
/// Returns a reference to the parameters that should be used to configure the circuit.
/// Requires the `circuit-params` feature.
#[cfg(feature = "circuit-params")]
fn params(&self) -> Self::Params {
Self::Params::default()
}
/// The circuit is given an opportunity to describe the exact gate
/// arrangement, column arrangement, etc. Takes a runtime parameter. The default
/// implementation calls `configure` ignoring the `_params` argument in order to easily support
/// circuits that don't use configuration parameters.
#[cfg(feature = "circuit-params")]
fn configure_with_params(
meta: &mut ConstraintSystem<F>,
_params: Self::Params,
) -> Self::Config {
Self::configure(meta)
}
/// The circuit is given an opportunity to describe the exact gate
/// arrangement, column arrangement, etc.
fn configure(meta: &mut ConstraintSystem<F>) -> Self::Config;
/// Given the provided `cs`, synthesize the circuit. The concrete type of
/// the caller will be different depending on the context, and they may or
/// may not expect to have a witness present.
fn synthesize(&self, config: Self::Config, layouter: impl Layouter<F>) -> Result<(), Error>;
}
/// Low-degree expression representing an identity that must hold over the committed columns.
#[derive(Clone)]
pub enum Expression<F> {
/// This is a constant polynomial
Constant(F),
/// This is a virtual selector
Selector(Selector),
/// This is a fixed column queried at a certain relative location
Fixed(FixedQuery),
/// This is an advice (witness) column queried at a certain relative location
Advice(AdviceQuery),
/// This is an instance (external) column queried at a certain relative location
Instance(InstanceQuery),
/// This is a challenge
Challenge(Challenge),
/// This is a negated polynomial
Negated(Box<Expression<F>>),
/// This is the sum of two polynomials
Sum(Box<Expression<F>>, Box<Expression<F>>),
/// This is the product of two polynomials
Product(Box<Expression<F>>, Box<Expression<F>>),
/// This is a scaled polynomial
Scaled(Box<Expression<F>>, F),
}
impl<F: Field> Expression<F> {
/// Make side effects
pub fn query_cells(&mut self, cells: &mut VirtualCells<'_, F>) {
match self {
Expression::Constant(_) => (),
Expression::Selector(selector) => {
if !cells.queried_selectors.contains(selector) {
cells.queried_selectors.push(*selector);
}
}
Expression::Fixed(query) => {
if query.index.is_none() {
let col = Column {
index: query.column_index,
column_type: Fixed,
};
cells.queried_cells.push((col, query.rotation).into());
query.index = Some(cells.meta.query_fixed_index(col, query.rotation));
}
}
Expression::Advice(query) => {
if query.index.is_none() {
let col = Column {
index: query.column_index,
column_type: Advice { phase: query.phase },
};
cells.queried_cells.push((col, query.rotation).into());
query.index = Some(cells.meta.query_advice_index(col, query.rotation));
}
}
Expression::Instance(query) => {
if query.index.is_none() {
let col = Column {
index: query.column_index,
column_type: Instance,
};
cells.queried_cells.push((col, query.rotation).into());
query.index = Some(cells.meta.query_instance_index(col, query.rotation));
}
}
Expression::Challenge(_) => (),
Expression::Negated(a) => a.query_cells(cells),
Expression::Sum(a, b) => {
a.query_cells(cells);
b.query_cells(cells);
}
Expression::Product(a, b) => {
a.query_cells(cells);
b.query_cells(cells);
}
Expression::Scaled(a, _) => a.query_cells(cells),
};
}
/// Evaluate the polynomial using the provided closures to perform the
/// operations.
#[allow(clippy::too_many_arguments)]
pub fn evaluate<T>(
&self,
constant: &impl Fn(F) -> T,
selector_column: &impl Fn(Selector) -> T,
fixed_column: &impl Fn(FixedQuery) -> T,
advice_column: &impl Fn(AdviceQuery) -> T,
instance_column: &impl Fn(InstanceQuery) -> T,
challenge: &impl Fn(Challenge) -> T,
negated: &impl Fn(T) -> T,
sum: &impl Fn(T, T) -> T,
product: &impl Fn(T, T) -> T,
scaled: &impl Fn(T, F) -> T,
) -> T {
match self {
Expression::Constant(scalar) => constant(*scalar),
Expression::Selector(selector) => selector_column(*selector),
Expression::Fixed(query) => fixed_column(*query),
Expression::Advice(query) => advice_column(*query),
Expression::Instance(query) => instance_column(*query),
Expression::Challenge(value) => challenge(*value),
Expression::Negated(a) => {
let a = a.evaluate(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
);
negated(a)
}
Expression::Sum(a, b) => {
let a = a.evaluate(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
);
let b = b.evaluate(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
);
sum(a, b)
}
Expression::Product(a, b) => {
let a = a.evaluate(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
);
let b = b.evaluate(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
);
product(a, b)
}
Expression::Scaled(a, f) => {
let a = a.evaluate(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
);
scaled(a, *f)
}
}
}
/// Evaluate the polynomial lazily using the provided closures to perform the
/// operations.
#[allow(clippy::too_many_arguments)]
pub fn evaluate_lazy<T: PartialEq>(
&self,
constant: &impl Fn(F) -> T,
selector_column: &impl Fn(Selector) -> T,
fixed_column: &impl Fn(FixedQuery) -> T,
advice_column: &impl Fn(AdviceQuery) -> T,
instance_column: &impl Fn(InstanceQuery) -> T,
challenge: &impl Fn(Challenge) -> T,
negated: &impl Fn(T) -> T,
sum: &impl Fn(T, T) -> T,
product: &impl Fn(T, T) -> T,
scaled: &impl Fn(T, F) -> T,
zero: &T,
) -> T {
match self {
Expression::Constant(scalar) => constant(*scalar),
Expression::Selector(selector) => selector_column(*selector),
Expression::Fixed(query) => fixed_column(*query),
Expression::Advice(query) => advice_column(*query),
Expression::Instance(query) => instance_column(*query),
Expression::Challenge(value) => challenge(*value),
Expression::Negated(a) => {
let a = a.evaluate_lazy(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
zero,
);
negated(a)
}
Expression::Sum(a, b) => {
let a = a.evaluate_lazy(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
zero,
);
let b = b.evaluate_lazy(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
zero,
);
sum(a, b)
}
Expression::Product(a, b) => {
let (a, b) = if a.complexity() <= b.complexity() {
(a, b)
} else {
(b, a)
};
let a = a.evaluate_lazy(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
zero,
);
if a == *zero {
a
} else {
let b = b.evaluate_lazy(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
zero,
);
product(a, b)
}
}
Expression::Scaled(a, f) => {
let a = a.evaluate_lazy(
constant,
selector_column,
fixed_column,
advice_column,
instance_column,
challenge,
negated,
sum,
product,
scaled,
zero,
);
scaled(a, *f)
}
}
}
fn write_identifier<W: std::io::Write>(&self, writer: &mut W) -> std::io::Result<()> {
match self {
Expression::Constant(scalar) => write!(writer, "{:?}", scalar),
Expression::Selector(selector) => write!(writer, "selector[{}]", selector.0),
Expression::Fixed(query) => {
write!(
writer,
"fixed[{}][{}]",
query.column_index, query.rotation.0
)
}
Expression::Advice(query) => {
write!(
writer,
"advice[{}][{}]",
query.column_index, query.rotation.0
)
}
Expression::Instance(query) => {
write!(
writer,
"instance[{}][{}]",
query.column_index, query.rotation.0
)
}
Expression::Challenge(challenge) => {
write!(writer, "challenge[{}]", challenge.index())
}
Expression::Negated(a) => {
writer.write_all(b"(-")?;
a.write_identifier(writer)?;
writer.write_all(b")")
}
Expression::Sum(a, b) => {
writer.write_all(b"(")?;
a.write_identifier(writer)?;
writer.write_all(b"+")?;
b.write_identifier(writer)?;
writer.write_all(b")")
}
Expression::Product(a, b) => {
writer.write_all(b"(")?;
a.write_identifier(writer)?;
writer.write_all(b"*")?;
b.write_identifier(writer)?;
writer.write_all(b")")
}
Expression::Scaled(a, f) => {
a.write_identifier(writer)?;
write!(writer, "*{:?}", f)
}
}
}
/// Identifier for this expression. Expressions with identical identifiers
/// do the same calculation (but the expressions don't need to be exactly equal
/// in how they are composed e.g. `1 + 2` and `2 + 1` can have the same identifier).
pub fn identifier(&self) -> String {
let mut cursor = std::io::Cursor::new(Vec::new());
self.write_identifier(&mut cursor).unwrap();
String::from_utf8(cursor.into_inner()).unwrap()
}
/// Compute the degree of this polynomial
pub fn degree(&self) -> usize {
match self {
Expression::Constant(_) => 0,
Expression::Selector(_) => 1,
Expression::Fixed(_) => 1,
Expression::Advice(_) => 1,
Expression::Instance(_) => 1,
Expression::Challenge(_) => 0,
Expression::Negated(poly) => poly.degree(),
Expression::Sum(a, b) => max(a.degree(), b.degree()),
Expression::Product(a, b) => a.degree() + b.degree(),
Expression::Scaled(poly, _) => poly.degree(),
}
}
/// Approximate the computational complexity of this expression.
pub fn complexity(&self) -> usize {
match self {
Expression::Constant(_) => 0,
Expression::Selector(_) => 1,
Expression::Fixed(_) => 1,
Expression::Advice(_) => 1,
Expression::Instance(_) => 1,
Expression::Challenge(_) => 0,
Expression::Negated(poly) => poly.complexity() + 5,
Expression::Sum(a, b) => a.complexity() + b.complexity() + 15,
Expression::Product(a, b) => a.complexity() + b.complexity() + 30,
Expression::Scaled(poly, _) => poly.complexity() + 30,
}
}
/// Square this expression.
pub fn square(self) -> Self {
self.clone() * self
}
/// Returns whether or not this expression contains a simple `Selector`.
fn contains_simple_selector(&self) -> bool {
self.evaluate(
&|_| false,
&|selector| selector.is_simple(),
&|_| false,
&|_| false,
&|_| false,
&|_| false,
&|a| a,
&|a, b| a || b,
&|a, b| a || b,
&|a, _| a,
)
}
/// Extracts a simple selector from this gate, if present
fn extract_simple_selector(&self) -> Option<Selector> {
let op = |a, b| match (a, b) {
(Some(a), None) | (None, Some(a)) => Some(a),
(Some(_), Some(_)) => panic!("two simple selectors cannot be in the same expression"),
_ => None,
};
self.evaluate(
&|_| None,
&|selector| {
if selector.is_simple() {
Some(selector)
} else {
None
}
},
&|_| None,
&|_| None,
&|_| None,
&|_| None,
&|a| a,
&op,
&op,
&|a, _| a,
)
}
/// Extracts all used instance columns in this expression
pub fn extract_instances(&self) -> Vec<usize> {
self.evaluate(
&|_| vec![],
&|_| vec![],
&|_| vec![],
&|_| vec![],
&|query| vec![query.column_index],
&|_| vec![],
&|a| a,
&|mut a, b| {
a.extend(b);
a.into_iter().unique().collect()
},
&|mut a, b| {
a.extend(b);
a.into_iter().unique().collect()
},
&|a, _| a,
)
}
/// Extracts all used advice columns in this expression
pub fn extract_advices(&self) -> Vec<usize> {
self.evaluate(
&|_| vec![],
&|_| vec![],
&|_| vec![],
&|query| vec![query.column_index],
&|_| vec![],
&|_| vec![],
&|a| a,
&|mut a, b| {
a.extend(b);
a.into_iter().unique().collect()
},
&|mut a, b| {
a.extend(b);
a.into_iter().unique().collect()
},
&|a, _| a,
)
}
/// Extracts all used fixed columns in this expression
pub fn extract_fixed(&self) -> Vec<usize> {
self.evaluate(
&|_| vec![],
&|_| vec![],
&|query| vec![query.column_index],
&|_| vec![],
&|_| vec![],
&|_| vec![],
&|a| a,
&|mut a, b| {
a.extend(b);
a.into_iter().unique().collect()
},
&|mut a, b| {
a.extend(b);
a.into_iter().unique().collect()
},
&|a, _| a,
)
}
}
impl<F: std::fmt::Debug> std::fmt::Debug for Expression<F> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Expression::Constant(scalar) => f.debug_tuple("Constant").field(scalar).finish(),
Expression::Selector(selector) => f.debug_tuple("Selector").field(selector).finish(),
// Skip enum variant and print query struct directly to maintain backwards compatibility.
Expression::Fixed(query) => {
let mut debug_struct = f.debug_struct("Fixed");
match query.index {
None => debug_struct.field("query_index", &query.index),
Some(idx) => debug_struct.field("query_index", &idx),
};
debug_struct
.field("column_index", &query.column_index)
.field("rotation", &query.rotation)
.finish()
}
Expression::Advice(query) => {
let mut debug_struct = f.debug_struct("Advice");
match query.index {
None => debug_struct.field("query_index", &query.index),
Some(idx) => debug_struct.field("query_index", &idx),
};
debug_struct
.field("column_index", &query.column_index)
.field("rotation", &query.rotation);
// Only show advice's phase if it's not in first phase.
if query.phase != FirstPhase.to_sealed() {
debug_struct.field("phase", &query.phase);
}
debug_struct.finish()
}
Expression::Instance(query) => {
let mut debug_struct = f.debug_struct("Instance");
match query.index {
None => debug_struct.field("query_index", &query.index),
Some(idx) => debug_struct.field("query_index", &idx),
};
debug_struct
.field("column_index", &query.column_index)
.field("rotation", &query.rotation)
.finish()
}
Expression::Challenge(challenge) => {
f.debug_tuple("Challenge").field(challenge).finish()
}
Expression::Negated(poly) => f.debug_tuple("Negated").field(poly).finish(),
Expression::Sum(a, b) => f.debug_tuple("Sum").field(a).field(b).finish(),
Expression::Product(a, b) => f.debug_tuple("Product").field(a).field(b).finish(),
Expression::Scaled(poly, scalar) => {
f.debug_tuple("Scaled").field(poly).field(scalar).finish()
}
}
}
}
impl<F: Field> Neg for Expression<F> {
type Output = Expression<F>;
fn neg(self) -> Self::Output {
Expression::Negated(Box::new(self))
}
}
impl<F: Field> Add for Expression<F> {
type Output = Expression<F>;
fn add(self, rhs: Expression<F>) -> Expression<F> {
if self.contains_simple_selector() || rhs.contains_simple_selector() {
panic!("attempted to use a simple selector in an addition");
}
Expression::Sum(Box::new(self), Box::new(rhs))
}
}
impl<F: Field> Sub for Expression<F> {
type Output = Expression<F>;
fn sub(self, rhs: Expression<F>) -> Expression<F> {
if self.contains_simple_selector() || rhs.contains_simple_selector() {
panic!("attempted to use a simple selector in a subtraction");
}
Expression::Sum(Box::new(self), Box::new(-rhs))
}
}
impl<F: Field> Mul for Expression<F> {
type Output = Expression<F>;
fn mul(self, rhs: Expression<F>) -> Expression<F> {
if self.contains_simple_selector() && rhs.contains_simple_selector() {
panic!("attempted to multiply two expressions containing simple selectors");
}
Expression::Product(Box::new(self), Box::new(rhs))
}
}
impl<F: Field> Mul<F> for Expression<F> {
type Output = Expression<F>;
fn mul(self, rhs: F) -> Expression<F> {
Expression::Scaled(Box::new(self), rhs)
}
}
/// Represents an index into a vector where each entry corresponds to a distinct
/// point that polynomials are queried at.
#[derive(Copy, Clone, Debug)]
pub(crate) struct PointIndex(pub usize);
/// A "virtual cell" is a PLONK cell that has been queried at a particular relative offset
/// within a custom gate.
#[derive(Clone, Debug)]
pub struct VirtualCell {
pub(crate) column: Column<Any>,
pub(crate) rotation: Rotation,
}
impl<Col: Into<Column<Any>>> From<(Col, Rotation)> for VirtualCell {
fn from((column, rotation): (Col, Rotation)) -> Self {
VirtualCell {
column: column.into(),
rotation,
}
}
}
/// An individual polynomial constraint.
///
/// These are returned by the closures passed to `ConstraintSystem::create_gate`.
#[derive(Debug)]
pub struct Constraint<F: Field> {
name: String,
poly: Expression<F>,
}
impl<F: Field> From<Expression<F>> for Constraint<F> {
fn from(poly: Expression<F>) -> Self {
Constraint {
name: "".to_string(),
poly,
}
}
}
impl<F: Field, S: AsRef<str>> From<(S, Expression<F>)> for Constraint<F> {
fn from((name, poly): (S, Expression<F>)) -> Self {
Constraint {
name: name.as_ref().to_string(),
poly,
}
}
}
impl<F: Field> From<Expression<F>> for Vec<Constraint<F>> {
fn from(poly: Expression<F>) -> Self {
vec![Constraint {
name: "".to_string(),
poly,
}]
}
}
/// A set of polynomial constraints with a common selector.
///
/// ```
/// use halo2_axiom::{plonk::{Constraints, Expression}, poly::Rotation};
/// use halo2curves::pasta::Fp;
/// # use halo2_axiom::plonk::ConstraintSystem;
///
/// # let mut meta = ConstraintSystem::<Fp>::default();
/// let a = meta.advice_column();
/// let b = meta.advice_column();
/// let c = meta.advice_column();
/// let s = meta.selector();
///
/// meta.create_gate("foo", |meta| {
/// let next = meta.query_advice(a, Rotation::next());
/// let a = meta.query_advice(a, Rotation::cur());
/// let b = meta.query_advice(b, Rotation::cur());
/// let c = meta.query_advice(c, Rotation::cur());
/// let s_ternary = meta.query_selector(s);
///
/// let one_minus_a = Expression::Constant(Fp::one()) - a.clone();
///
/// Constraints::with_selector(
/// s_ternary,
/// std::array::IntoIter::new([
/// ("a is boolean", a.clone() * one_minus_a.clone()),
/// ("next == a ? b : c", next - (a * b + one_minus_a * c)),
/// ]),
/// )
/// });
/// ```
///
/// Note that the use of `std::array::IntoIter::new` is only necessary if you need to
/// support Rust 1.51 or 1.52. If your minimum supported Rust version is 1.53 or greater,
/// you can pass an array directly.
#[derive(Debug)]
pub struct Constraints<F: Field, C: Into<Constraint<F>>, Iter: IntoIterator<Item = C>> {
selector: Expression<F>,
constraints: Iter,
}
impl<F: Field, C: Into<Constraint<F>>, Iter: IntoIterator<Item = C>> Constraints<F, C, Iter> {
/// Constructs a set of constraints that are controlled by the given selector.
///
/// Each constraint `c` in `iterator` will be converted into the constraint
/// `selector * c`.
pub fn with_selector(selector: Expression<F>, constraints: Iter) -> Self {
Constraints {
selector,
constraints,
}
}
}
fn apply_selector_to_constraint<F: Field, C: Into<Constraint<F>>>(
(selector, c): (Expression<F>, C),
) -> Constraint<F> {
let constraint: Constraint<F> = c.into();
Constraint {
name: constraint.name,
poly: selector * constraint.poly,
}
}
type ApplySelectorToConstraint<F, C> = fn((Expression<F>, C)) -> Constraint<F>;
type ConstraintsIterator<F, C, I> = std::iter::Map<
std::iter::Zip<std::iter::Repeat<Expression<F>>, I>,
ApplySelectorToConstraint<F, C>,
>;
impl<F: Field, C: Into<Constraint<F>>, Iter: IntoIterator<Item = C>> IntoIterator
for Constraints<F, C, Iter>
{
type Item = Constraint<F>;
type IntoIter = ConstraintsIterator<F, C, Iter::IntoIter>;
fn into_iter(self) -> Self::IntoIter {
std::iter::repeat(self.selector)
.zip(self.constraints)
.map(apply_selector_to_constraint)
}
}
/// Gate
#[derive(Clone, Debug)]
pub struct Gate<F: Field> {
name: String,
constraint_names: Vec<String>,
polys: Vec<Expression<F>>,
/// We track queried selectors separately from other cells, so that we can use them to
/// trigger debug checks on gates.
queried_selectors: Vec<Selector>,
queried_cells: Vec<VirtualCell>,
}
impl<F: Field> Gate<F> {
/// Returns the gate name.
pub fn name(&self) -> &str {
self.name.as_str()
}
/// Returns the name of the constraint at index `constraint_index`.
pub fn constraint_name(&self, constraint_index: usize) -> &str {
self.constraint_names[constraint_index].as_str()
}
/// Returns constraints of this gate
pub fn polynomials(&self) -> &[Expression<F>] {
&self.polys
}
pub(crate) fn queried_selectors(&self) -> &[Selector] {
&self.queried_selectors
}
pub(crate) fn queried_cells(&self) -> &[VirtualCell] {
&self.queried_cells
}
}
/// This is a description of the circuit environment, such as the gate, column and
/// permutation arrangements.
#[derive(Debug, Clone)]
pub struct ConstraintSystem<F: Field> {
pub(crate) num_fixed_columns: usize,
pub(crate) num_advice_columns: usize,
pub(crate) num_instance_columns: usize,
pub(crate) num_selectors: usize,
pub(crate) num_challenges: usize,
/// Contains the phase for each advice column. Should have same length as num_advice_columns.
pub(crate) advice_column_phase: Vec<sealed::Phase>,
/// Contains the phase for each challenge. Should have same length as num_challenges.
pub(crate) challenge_phase: Vec<sealed::Phase>,
/// This is a cached vector that maps virtual selectors to the concrete
/// fixed column that they were compressed into. This is just used by dev
/// tooling right now.
pub(crate) selector_map: Vec<Column<Fixed>>,
pub(crate) gates: Vec<Gate<F>>,
pub(crate) advice_queries: Vec<(Column<Advice>, Rotation)>,
// Contains an integer for each advice column
// identifying how many distinct queries it has
// so far; should be same length as num_advice_columns.
num_advice_queries: Vec<usize>,
pub(crate) instance_queries: Vec<(Column<Instance>, Rotation)>,
pub(crate) fixed_queries: Vec<(Column<Fixed>, Rotation)>,
// Permutation argument for performing equality constraints
pub(crate) permutation: permutation::Argument,
// Vector of lookup arguments, where each corresponds to a sequence of
// input expressions and a sequence of table expressions involved in the lookup.
pub(crate) lookups: Vec<lookup::Argument<F>>,
// List of indexes of Fixed columns which are associated to a circuit-general Column tied to their annotation.
pub(crate) general_column_annotations: HashMap<metadata::Column, String>,
// Vector of fixed columns, which can be used to store constant values
// that are copied into advice columns.
pub(crate) constants: Vec<Column<Fixed>>,
pub(crate) minimum_degree: Option<usize>,
}
/// Represents the minimal parameters that determine a `ConstraintSystem`.
#[allow(dead_code)]
pub struct PinnedConstraintSystem<'a, F: Field> {
num_fixed_columns: &'a usize,
num_advice_columns: &'a usize,
num_instance_columns: &'a usize,
num_selectors: &'a usize,
num_challenges: &'a usize,
advice_column_phase: &'a Vec<sealed::Phase>,
challenge_phase: &'a Vec<sealed::Phase>,
gates: PinnedGates<'a, F>,
advice_queries: &'a Vec<(Column<Advice>, Rotation)>,
instance_queries: &'a Vec<(Column<Instance>, Rotation)>,
fixed_queries: &'a Vec<(Column<Fixed>, Rotation)>,
permutation: &'a permutation::Argument,
lookups: &'a Vec<lookup::Argument<F>>,
constants: &'a Vec<Column<Fixed>>,
minimum_degree: &'a Option<usize>,
}
impl<'a, F: Field> std::fmt::Debug for PinnedConstraintSystem<'a, F> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut debug_struct = f.debug_struct("PinnedConstraintSystem");
debug_struct
.field("num_fixed_columns", self.num_fixed_columns)
.field("num_advice_columns", self.num_advice_columns)
.field("num_instance_columns", self.num_instance_columns)
.field("num_selectors", self.num_selectors);
// Only show multi-phase related fields if it's used.
if *self.num_challenges > 0 {
debug_struct
.field("num_challenges", self.num_challenges)
.field("advice_column_phase", self.advice_column_phase)
.field("challenge_phase", self.challenge_phase);
}
debug_struct
.field("gates", &self.gates)
.field("advice_queries", self.advice_queries)
.field("instance_queries", self.instance_queries)
.field("fixed_queries", self.fixed_queries)
.field("permutation", self.permutation)
.field("lookups", self.lookups)
.field("constants", self.constants)
.field("minimum_degree", self.minimum_degree);
debug_struct.finish()
}
}
struct PinnedGates<'a, F: Field>(&'a Vec<Gate<F>>);
impl<'a, F: Field> std::fmt::Debug for PinnedGates<'a, F> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
f.debug_list()
.entries(self.0.iter().flat_map(|gate| gate.polynomials().iter()))
.finish()
}
}
impl<F: Field> Default for ConstraintSystem<F> {
fn default() -> ConstraintSystem<F> {
ConstraintSystem {
num_fixed_columns: 0,
num_advice_columns: 0,
num_instance_columns: 0,
num_selectors: 0,
num_challenges: 0,
advice_column_phase: Vec::new(),
challenge_phase: Vec::new(),
selector_map: vec![],
gates: vec![],
fixed_queries: Vec::new(),
advice_queries: Vec::new(),
num_advice_queries: Vec::new(),
instance_queries: Vec::new(),
permutation: permutation::Argument::new(),
lookups: Vec::new(),
general_column_annotations: HashMap::new(),
constants: vec![],
minimum_degree: None,
}
}
}
impl<F: Field> ConstraintSystem<F> {
/// Obtain a pinned version of this constraint system; a structure with the
/// minimal parameters needed to determine the rest of the constraint
/// system.
pub fn pinned(&self) -> PinnedConstraintSystem<'_, F> {
PinnedConstraintSystem {
num_fixed_columns: &self.num_fixed_columns,
num_advice_columns: &self.num_advice_columns,
num_instance_columns: &self.num_instance_columns,
num_selectors: &self.num_selectors,
num_challenges: &self.num_challenges,
advice_column_phase: &self.advice_column_phase,
challenge_phase: &self.challenge_phase,
gates: PinnedGates(&self.gates),
fixed_queries: &self.fixed_queries,
advice_queries: &self.advice_queries,
instance_queries: &self.instance_queries,
permutation: &self.permutation,
lookups: &self.lookups,
constants: &self.constants,
minimum_degree: &self.minimum_degree,
}
}
/// Enables this fixed column to be used for global constant assignments.
///
/// # Side-effects
///
/// The column will be equality-enabled.
pub fn enable_constant(&mut self, column: Column<Fixed>) {
if !self.constants.contains(&column) {
self.constants.push(column);
self.enable_equality(column);
}
}
/// Enable the ability to enforce equality over cells in this column
pub fn enable_equality<C: Into<Column<Any>>>(&mut self, column: C) {
let column = column.into();
self.query_any_index(column, Rotation::cur());
self.permutation.add_column(column);
}
/// Add a lookup argument for some input expressions and table columns.
///
/// `table_map` returns a map between input expressions and the table columns
/// they need to match.
pub fn lookup<S: AsRef<str>>(
&mut self,
name: S,
table_map: impl FnOnce(&mut VirtualCells<'_, F>) -> Vec<(Expression<F>, TableColumn)>,
) -> usize {
let mut cells = VirtualCells::new(self);
let table_map = table_map(&mut cells)
.into_iter()
.map(|(mut input, table)| {
if input.contains_simple_selector() {
panic!("expression containing simple selector supplied to lookup argument");
}
let mut table = cells.query_fixed(table.inner(), Rotation::cur());
input.query_cells(&mut cells);
table.query_cells(&mut cells);
(input, table)
})
.collect();
let index = self.lookups.len();
self.lookups
.push(lookup::Argument::new(name.as_ref(), table_map));
index
}
/// Add a lookup argument for some input expressions and table expressions.
///
/// `table_map` returns a map between input expressions and the table expressions
/// they need to match.
pub fn lookup_any<S: AsRef<str>>(
&mut self,
name: S,
table_map: impl FnOnce(&mut VirtualCells<'_, F>) -> Vec<(Expression<F>, Expression<F>)>,
) -> usize {
let mut cells = VirtualCells::new(self);
let table_map = table_map(&mut cells)
.into_iter()
.map(|(mut input, mut table)| {
input.query_cells(&mut cells);
table.query_cells(&mut cells);
(input, table)
})
.collect();
let index = self.lookups.len();
self.lookups
.push(lookup::Argument::new(name.as_ref(), table_map));
index
}
fn query_fixed_index(&mut self, column: Column<Fixed>, at: Rotation) -> usize {
// Return existing query, if it exists
for (index, fixed_query) in self.fixed_queries.iter().enumerate() {
if fixed_query == &(column, at) {
return index;
}
}
// Make a new query
let index = self.fixed_queries.len();
self.fixed_queries.push((column, at));
index
}
pub(crate) fn query_advice_index(&mut self, column: Column<Advice>, at: Rotation) -> usize {
// Return existing query, if it exists
for (index, advice_query) in self.advice_queries.iter().enumerate() {
if advice_query == &(column, at) {
return index;
}
}
// Make a new query
let index = self.advice_queries.len();
self.advice_queries.push((column, at));
self.num_advice_queries[column.index] += 1;
index
}
fn query_instance_index(&mut self, column: Column<Instance>, at: Rotation) -> usize {
// Return existing query, if it exists
for (index, instance_query) in self.instance_queries.iter().enumerate() {
if instance_query == &(column, at) {
return index;
}
}
// Make a new query
let index = self.instance_queries.len();
self.instance_queries.push((column, at));
index
}
fn query_any_index(&mut self, column: Column<Any>, at: Rotation) -> usize {
match column.column_type() {
Any::Advice(_) => {
self.query_advice_index(Column::<Advice>::try_from(column).unwrap(), at)
}
Any::Fixed => self.query_fixed_index(Column::<Fixed>::try_from(column).unwrap(), at),
Any::Instance => {
self.query_instance_index(Column::<Instance>::try_from(column).unwrap(), at)
}
}
}
pub(crate) fn get_advice_query_index(&self, column: Column<Advice>, at: Rotation) -> usize {
for (index, advice_query) in self.advice_queries.iter().enumerate() {
if advice_query == &(column, at) {
return index;
}
}
panic!("get_advice_query_index called for non-existent query");
}
pub(crate) fn get_fixed_query_index(&self, column: Column<Fixed>, at: Rotation) -> usize {
for (index, fixed_query) in self.fixed_queries.iter().enumerate() {
if fixed_query == &(column, at) {
return index;
}
}
panic!("get_fixed_query_index called for non-existent query");
}
pub(crate) fn get_instance_query_index(&self, column: Column<Instance>, at: Rotation) -> usize {
for (index, instance_query) in self.instance_queries.iter().enumerate() {
if instance_query == &(column, at) {
return index;
}
}
panic!("get_instance_query_index called for non-existent query");
}
pub(crate) fn get_any_query_index(&self, column: Column<Any>, at: Rotation) -> usize {
match column.column_type() {
Any::Advice(_) => {
self.get_advice_query_index(Column::<Advice>::try_from(column).unwrap(), at)
}
Any::Fixed => {
self.get_fixed_query_index(Column::<Fixed>::try_from(column).unwrap(), at)
}
Any::Instance => {
self.get_instance_query_index(Column::<Instance>::try_from(column).unwrap(), at)
}
}
}
/// Sets the minimum degree required by the circuit, which can be set to a
/// larger amount than actually needed. This can be used, for example, to
/// force the permutation argument to involve more columns in the same set.
pub fn set_minimum_degree(&mut self, degree: usize) {
self.minimum_degree = Some(degree);
}
/// Creates a new gate.
///
/// # Panics
///
/// A gate is required to contain polynomial constraints. This method will panic if
/// `constraints` returns an empty iterator.
pub fn create_gate<C: Into<Constraint<F>>, Iter: IntoIterator<Item = C>, S: AsRef<str>>(
&mut self,
name: S,
constraints: impl FnOnce(&mut VirtualCells<'_, F>) -> Iter,
) {
let mut cells = VirtualCells::new(self);
let constraints = constraints(&mut cells);
let (constraint_names, polys): (_, Vec<_>) = constraints
.into_iter()
.map(|c| c.into())
.map(|mut c: Constraint<F>| {
c.poly.query_cells(&mut cells);
(c.name, c.poly)
})
.unzip();
let queried_selectors = cells.queried_selectors;
let queried_cells = cells.queried_cells;
assert!(
!polys.is_empty(),
"Gates must contain at least one constraint."
);
self.gates.push(Gate {
name: name.as_ref().to_string(),
constraint_names,
polys,
queried_selectors,
queried_cells,
});
}
/// This will compress selectors together depending on their provided
/// assignments. This `ConstraintSystem` will then be modified to add new
/// fixed columns (representing the actual selectors) and will return the
/// polynomials for those columns. Finally, an internal map is updated to
/// find which fixed column corresponds with a given `Selector`.
///
/// Do not call this twice. Yes, this should be a builder pattern instead.
pub fn compress_selectors(mut self, selectors: Vec<Vec<bool>>) -> (Self, Vec<Vec<F>>) {
// The number of provided selector assignments must be the number we
// counted for this constraint system.
assert_eq!(selectors.len(), self.num_selectors);
// Compute the maximal degree of every selector. We only consider the
// expressions in gates, as lookup arguments cannot support simple
// selectors. Selectors that are complex or do not appear in any gates
// will have degree zero.
let mut degrees = vec![0; selectors.len()];
for expr in self.gates.iter().flat_map(|gate| gate.polys.iter()) {
if let Some(selector) = expr.extract_simple_selector() {
degrees[selector.0] = max(degrees[selector.0], expr.degree());
}
}
// We will not increase the degree of the constraint system, so we limit
// ourselves to the largest existing degree constraint.
let max_degree = self.degree();
let mut new_columns = vec![];
let (polys, selector_assignment) = compress_selectors::process(
selectors
.into_iter()
.zip(degrees)
.enumerate()
.map(
|(i, (activations, max_degree))| compress_selectors::SelectorDescription {
selector: i,
activations,
max_degree,
},
)
.collect(),
max_degree,
|| {
let column = self.fixed_column();
new_columns.push(column);
Expression::Fixed(FixedQuery {
index: Some(self.query_fixed_index(column, Rotation::cur())),
column_index: column.index,
rotation: Rotation::cur(),
})
},
);
let mut selector_map = vec![None; selector_assignment.len()];
let mut selector_replacements = vec![None; selector_assignment.len()];
for assignment in selector_assignment {
selector_replacements[assignment.selector] = Some(assignment.expression);
selector_map[assignment.selector] = Some(new_columns[assignment.combination_index]);
}
self.selector_map = selector_map
.into_iter()
.map(|a| a.unwrap())
.collect::<Vec<_>>();
let selector_replacements = selector_replacements
.into_iter()
.map(|a| a.unwrap())
.collect::<Vec<_>>();
self.replace_selectors_with_fixed(&selector_replacements);
(self, polys)
}
/// Does not combine selectors and directly replaces them everywhere with fixed columns.
pub fn directly_convert_selectors_to_fixed(
mut self,
selectors: Vec<Vec<bool>>,
) -> (Self, Vec<Vec<F>>) {
// The number of provided selector assignments must be the number we
// counted for this constraint system.
assert_eq!(selectors.len(), self.num_selectors);
let (polys, selector_replacements): (Vec<_>, Vec<_>) = selectors
.into_iter()
.map(|selector| {
let poly = selector
.iter()
.map(|b| if *b { F::ONE } else { F::ZERO })
.collect::<Vec<_>>();
let column = self.fixed_column();
let rotation = Rotation::cur();
let expr = Expression::Fixed(FixedQuery {
index: Some(self.query_fixed_index(column, rotation)),
column_index: column.index,
rotation,
});
(poly, expr)
})
.unzip();
self.replace_selectors_with_fixed(&selector_replacements);
self.num_selectors = 0;
(self, polys)
}
fn replace_selectors_with_fixed(&mut self, selector_replacements: &[Expression<F>]) {
fn replace_selectors<F: Field>(
expr: &mut Expression<F>,
selector_replacements: &[Expression<F>],
must_be_nonsimple: bool,
) {
*expr = expr.evaluate(
&|constant| Expression::Constant(constant),
&|selector| {
if must_be_nonsimple {
// Simple selectors are prohibited from appearing in
// expressions in the lookup argument by
// `ConstraintSystem`.
assert!(!selector.is_simple());
}
selector_replacements[selector.0].clone()
},
&|query| Expression::Fixed(query),
&|query| Expression::Advice(query),
&|query| Expression::Instance(query),
&|challenge| Expression::Challenge(challenge),
&|a| -a,
&|a, b| a + b,
&|a, b| a * b,
&|a, f| a * f,
);
}
// Substitute selectors for the real fixed columns in all gates
for expr in self.gates.iter_mut().flat_map(|gate| gate.polys.iter_mut()) {
replace_selectors(expr, selector_replacements, false);
}
// Substitute non-simple selectors for the real fixed columns in all
// lookup expressions
for expr in self.lookups.iter_mut().flat_map(|lookup| {
lookup
.input_expressions
.iter_mut()
.chain(lookup.table_expressions.iter_mut())
}) {
replace_selectors(expr, selector_replacements, true);
}
}
/// Allocate a new (simple) selector. Simple selectors cannot be added to
/// expressions nor multiplied by other expressions containing simple
/// selectors. Also, simple selectors may not appear in lookup argument
/// inputs.
pub fn selector(&mut self) -> Selector {
let index = self.num_selectors;
self.num_selectors += 1;
Selector(index, true)
}
/// Allocate a new complex selector that can appear anywhere
/// within expressions.
pub fn complex_selector(&mut self) -> Selector {
let index = self.num_selectors;
self.num_selectors += 1;
Selector(index, false)
}
/// Allocates a new fixed column that can be used in a lookup table.
pub fn lookup_table_column(&mut self) -> TableColumn {
TableColumn {
inner: self.fixed_column(),
}
}
/// Annotate a Lookup column.
pub fn annotate_lookup_column<A, AR>(&mut self, column: TableColumn, annotation: A)
where
A: Fn() -> AR,
AR: Into<String>,
{
// We don't care if the table has already an annotation. If it's the case we keep the new one.
self.general_column_annotations.insert(
metadata::Column::from((Any::Fixed, column.inner().index)),
annotation().into(),
);
}
/// Annotate an Instance column.
pub fn annotate_lookup_any_column<A, AR, T>(&mut self, column: T, annotation: A)
where
A: Fn() -> AR,
AR: Into<String>,
T: Into<Column<Any>>,
{
let col_any = column.into();
// We don't care if the table has already an annotation. If it's the case we keep the new one.
self.general_column_annotations.insert(
metadata::Column::from((col_any.column_type, col_any.index)),
annotation().into(),
);
}
/// Allocate a new fixed column
pub fn fixed_column(&mut self) -> Column<Fixed> {
let tmp = Column {
index: self.num_fixed_columns,
column_type: Fixed,
};
self.num_fixed_columns += 1;
tmp
}
/// Allocate a new advice column at `FirstPhase`
pub fn advice_column(&mut self) -> Column<Advice> {
self.advice_column_in(FirstPhase)
}
/// Allocate a new advice column in given phase
pub fn advice_column_in<P: Phase>(&mut self, phase: P) -> Column<Advice> {
let phase = phase.to_sealed();
if let Some(previous_phase) = phase.prev() {
self.assert_phase_exists(
previous_phase,
format!("Column<Advice> in later phase {:?}", phase).as_str(),
);
}
let tmp = Column {
index: self.num_advice_columns,
column_type: Advice { phase },
};
self.num_advice_columns += 1;
self.num_advice_queries.push(0);
self.advice_column_phase.push(phase);
tmp
}
/// Allocate a new instance column
pub fn instance_column(&mut self) -> Column<Instance> {
let tmp = Column {
index: self.num_instance_columns,
column_type: Instance,
};
self.num_instance_columns += 1;
tmp
}
/// Requests a challenge that is usable after the given phase.
pub fn challenge_usable_after<P: Phase>(&mut self, phase: P) -> Challenge {
let phase = phase.to_sealed();
self.assert_phase_exists(
phase,
format!("Challenge usable after phase {:?}", phase).as_str(),
);
let tmp = Challenge {
index: self.num_challenges,
phase,
};
self.num_challenges += 1;
self.challenge_phase.push(phase);
tmp
}
/// Helper funciotn to assert phase exists, to make sure phase-aware resources
/// are allocated in order, and to avoid any phase to be skipped accidentally
/// to cause unexpected issue in the future.
fn assert_phase_exists(&self, phase: sealed::Phase, resource: &str) {
self.advice_column_phase
.iter()
.find(|advice_column_phase| **advice_column_phase == phase)
.unwrap_or_else(|| {
panic!(
"No Column<Advice> is used in phase {:?} while allocating a new {:?}",
phase, resource
)
});
}
pub(crate) fn phases(&self) -> impl Iterator<Item = sealed::Phase> {
let max_phase = self
.advice_column_phase
.iter()
.max()
.map(|phase| phase.0)
.unwrap_or_default();
(0..=max_phase).map(sealed::Phase)
}
/// Compute the degree of the constraint system (the maximum degree of all
/// constraints).
pub fn degree(&self) -> usize {
// The permutation argument will serve alongside the gates, so must be
// accounted for.
let mut degree = self.permutation.required_degree();
// The lookup argument also serves alongside the gates and must be accounted
// for.
degree = std::cmp::max(
degree,
self.lookups
.iter()
.map(|l| l.required_degree())
.max()
.unwrap_or(1),
);
// Account for each gate to ensure our quotient polynomial is the
// correct degree and that our extended domain is the right size.
degree = std::cmp::max(
degree,
self.gates
.iter()
.flat_map(|gate| gate.polynomials().iter().map(|poly| poly.degree()))
.max()
.unwrap_or(0),
);
fn get_max_degree() -> usize {
var("MAX_DEGREE")
.unwrap_or_else(|_| "5".to_string())
.parse()
.expect("Cannot parse MAX_DEGREE env var as usize")
}
degree = std::cmp::min(degree, get_max_degree());
std::cmp::max(degree, self.minimum_degree.unwrap_or(1))
}
/// Compute the number of blinding factors necessary to perfectly blind
/// each of the prover's witness polynomials.
pub fn blinding_factors(&self) -> usize {
// All of the prover's advice columns are evaluated at no more than
let factors = *self.num_advice_queries.iter().max().unwrap_or(&1);
// distinct points during gate checks.
// - The permutation argument witness polynomials are evaluated at most 3 times.
// - Each lookup argument has independent witness polynomials, and they are
// evaluated at most 2 times.
let factors = std::cmp::max(3, factors);
// Each polynomial is evaluated at most an additional time during
// multiopen (at x_3 to produce q_evals):
let factors = factors + 1;
// h(x) is derived by the other evaluations so it does not reveal
// anything; in fact it does not even appear in the proof.
// h(x_3) is also not revealed; the verifier only learns a single
// evaluation of a polynomial in x_1 which has h(x_3) and another random
// polynomial evaluated at x_3 as coefficients -- this random polynomial
// is "random_poly" in the vanishing argument.
// Add an additional blinding factor as a slight defense against
// off-by-one errors.
factors + 1
}
/// Returns the minimum necessary rows that need to exist in order to
/// account for e.g. blinding factors.
pub fn minimum_rows(&self) -> usize {
self.blinding_factors() // m blinding factors
+ 1 // for l_{-(m + 1)} (l_last)
+ 1 // for l_0 (just for extra breathing room for the permutation
// argument, to essentially force a separation in the
// permutation polynomial between the roles of l_last, l_0
// and the interstitial values.)
+ 1 // for at least one row
}
/// Returns number of fixed columns
pub fn num_fixed_columns(&self) -> usize {
self.num_fixed_columns
}
/// Returns number of advice columns
pub fn num_advice_columns(&self) -> usize {
self.num_advice_columns
}
/// Returns number of instance columns
pub fn num_instance_columns(&self) -> usize {
self.num_instance_columns
}
/// Returns number of selectors
pub fn num_selectors(&self) -> usize {
self.num_selectors
}
/// Returns number of challenges
pub fn num_challenges(&self) -> usize {
self.num_challenges
}
/// Returns phase of advice columns
pub fn advice_column_phase(&self) -> Vec<u8> {
self.advice_column_phase
.iter()
.map(|phase| phase.0)
.collect()
}
/// Returns phase of challenges
pub fn challenge_phase(&self) -> Vec<u8> {
self.challenge_phase.iter().map(|phase| phase.0).collect()
}
/// Returns gates
pub fn gates(&self) -> &Vec<Gate<F>> {
&self.gates
}
/// Returns general column annotations
pub fn general_column_annotations(&self) -> &HashMap<metadata::Column, String> {
&self.general_column_annotations
}
/// Returns advice queries
pub fn advice_queries(&self) -> &Vec<(Column<Advice>, Rotation)> {
&self.advice_queries
}
/// Returns instance queries
pub fn instance_queries(&self) -> &Vec<(Column<Instance>, Rotation)> {
&self.instance_queries
}
/// Returns fixed queries
pub fn fixed_queries(&self) -> &Vec<(Column<Fixed>, Rotation)> {
&self.fixed_queries
}
/// Returns permutation argument
pub fn permutation(&self) -> &permutation::Argument {
&self.permutation
}
/// Returns lookup arguments
pub fn lookups(&self) -> &Vec<lookup::Argument<F>> {
&self.lookups
}
/// Returns constants
pub fn constants(&self) -> &Vec<Column<Fixed>> {
&self.constants
}
}
/// Exposes the "virtual cells" that can be queried while creating a custom gate or lookup
/// table.
#[derive(Debug)]
pub struct VirtualCells<'a, F: Field> {
meta: &'a mut ConstraintSystem<F>,
queried_selectors: Vec<Selector>,
queried_cells: Vec<VirtualCell>,
}
impl<'a, F: Field> VirtualCells<'a, F> {
fn new(meta: &'a mut ConstraintSystem<F>) -> Self {
VirtualCells {
meta,
queried_selectors: vec![],
queried_cells: vec![],
}
}
/// Query a selector at the current position.
pub fn query_selector(&mut self, selector: Selector) -> Expression<F> {
self.queried_selectors.push(selector);
Expression::Selector(selector)
}
/// Query a fixed column at a relative position
pub fn query_fixed(&mut self, column: Column<Fixed>, at: Rotation) -> Expression<F> {
self.queried_cells.push((column, at).into());
Expression::Fixed(FixedQuery {
index: Some(self.meta.query_fixed_index(column, at)),
column_index: column.index,
rotation: at,
})
}
/// Query an advice column at a relative position
pub fn query_advice(&mut self, column: Column<Advice>, at: Rotation) -> Expression<F> {
self.queried_cells.push((column, at).into());
Expression::Advice(AdviceQuery {
index: Some(self.meta.query_advice_index(column, at)),
column_index: column.index,
rotation: at,
phase: column.column_type().phase,
})
}
/// Query an instance column at a relative position
pub fn query_instance(&mut self, column: Column<Instance>, at: Rotation) -> Expression<F> {
self.queried_cells.push((column, at).into());
Expression::Instance(InstanceQuery {
index: Some(self.meta.query_instance_index(column, at)),
column_index: column.index,
rotation: at,
})
}
/// Query an Any column at a relative position
pub fn query_any<C: Into<Column<Any>>>(&mut self, column: C, at: Rotation) -> Expression<F> {
let column = column.into();
match column.column_type() {
Any::Advice(_) => self.query_advice(Column::<Advice>::try_from(column).unwrap(), at),
Any::Fixed => self.query_fixed(Column::<Fixed>::try_from(column).unwrap(), at),
Any::Instance => self.query_instance(Column::<Instance>::try_from(column).unwrap(), at),
}
}
/// Query a challenge
pub fn query_challenge(&mut self, challenge: Challenge) -> Expression<F> {
Expression::Challenge(challenge)
}
}