halo2_base/gates/circuit/builder.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
use std::sync::{Arc, Mutex};
use getset::{Getters, MutGetters, Setters};
use itertools::Itertools;
use crate::{
gates::{
circuit::CircuitBuilderStage,
flex_gate::{
threads::{GateStatistics, MultiPhaseCoreManager, SinglePhaseCoreManager},
MultiPhaseThreadBreakPoints, MAX_PHASE,
},
range::RangeConfig,
RangeChip,
},
halo2_proofs::{
circuit::{Layouter, Region},
plonk::{Column, Instance},
},
utils::ScalarField,
virtual_region::{
copy_constraints::{CopyConstraintManager, SharedCopyConstraintManager},
lookups::LookupAnyManager,
manager::VirtualRegionManager,
},
AssignedValue, Context,
};
use super::BaseCircuitParams;
/// Keeping the naming `RangeCircuitBuilder` for backwards compatibility.
pub type RangeCircuitBuilder<F> = BaseCircuitBuilder<F>;
/// A circuit builder is a collection of virtual region managers that together assign virtual
/// regions into a single physical circuit.
///
/// [BaseCircuitBuilder] is a circuit builder to create a circuit where the columns correspond to [super::BaseConfig].
/// This builder can hold multiple threads, but the `Circuit` implementation only evaluates the first phase.
/// The user will have to implement a separate `Circuit` with multi-phase witness generation logic.
///
/// This is used to manage the virtual region corresponding to [super::FlexGateConfig] and (optionally) [RangeConfig].
/// This can be used even if only using [`GateChip`](crate::gates::flex_gate::GateChip) without [RangeChip].
///
/// The circuit will have `NI` public instance (aka public inputs+outputs) columns.
#[derive(Clone, Debug, Getters, MutGetters, Setters)]
pub struct BaseCircuitBuilder<F: ScalarField> {
/// Virtual region for each challenge phase. These cannot be shared across threads while keeping circuit deterministic.
#[getset(get = "pub", get_mut = "pub", set = "pub")]
pub(super) core: MultiPhaseCoreManager<F>,
/// The range lookup manager
#[getset(get = "pub", get_mut = "pub", set = "pub")]
pub(super) lookup_manager: [LookupAnyManager<F, 1>; MAX_PHASE],
/// Configuration parameters for the circuit shape
pub config_params: BaseCircuitParams,
/// The assigned instances to expose publicly at the end of circuit synthesis
pub assigned_instances: Vec<Vec<AssignedValue<F>>>,
}
impl<F: ScalarField> Default for BaseCircuitBuilder<F> {
/// Quick start default circuit builder which can be used for MockProver, Keygen, and real prover.
/// For best performance during real proof generation, we recommend using [BaseCircuitBuilder::prover] instead.
fn default() -> Self {
Self::new(false)
}
}
impl<F: ScalarField> BaseCircuitBuilder<F> {
/// Creates a new [BaseCircuitBuilder] with all default managers.
/// * `witness_gen_only`:
/// * If true, the builder only does witness asignments and does not store constraint information -- this should only be used for the real prover.
/// * If false, the builder also imposes constraints (selectors, fixed columns, copy constraints). Primarily used for keygen and mock prover (but can also be used for real prover).
///
/// By default, **no** circuit configuration parameters have been set.
/// These should be set separately using `use_params`, or `use_k`, `use_lookup_bits`, and `calculate_params`.
///
/// Upon construction, there are no public instances (aka all witnesses are private).
/// The intended usage is that _before_ calling `synthesize`, witness generation can be done to populate
/// assigned instances, which are supplied as `assigned_instances` to this struct.
/// The `Circuit` implementation for this struct will then expose these instances and constrain
/// them using the Halo2 API.
pub fn new(witness_gen_only: bool) -> Self {
let core = MultiPhaseCoreManager::new(witness_gen_only);
let lookup_manager = [(); MAX_PHASE]
.map(|_| LookupAnyManager::new(witness_gen_only, core.copy_manager.clone()));
Self { core, lookup_manager, config_params: Default::default(), assigned_instances: vec![] }
}
/// Creates a new [MultiPhaseCoreManager] depending on the stage of circuit building. If the stage is [CircuitBuilderStage::Prover], the [MultiPhaseCoreManager] is used for witness generation only.
pub fn from_stage(stage: CircuitBuilderStage) -> Self {
Self::new(stage.witness_gen_only()).unknown(stage == CircuitBuilderStage::Keygen)
}
/// Creates a new [BaseCircuitBuilder] with a pinned circuit configuration given by `config_params` and `break_points`.
pub fn prover(
config_params: BaseCircuitParams,
break_points: MultiPhaseThreadBreakPoints,
) -> Self {
Self::new(true).use_params(config_params).use_break_points(break_points)
}
/// Sets the copy manager to the given one in all shared references.
pub fn set_copy_manager(&mut self, copy_manager: SharedCopyConstraintManager<F>) {
for lm in &mut self.lookup_manager {
lm.set_copy_manager(copy_manager.clone());
}
self.core.set_copy_manager(copy_manager);
}
/// Returns `self` with a given copy manager
pub fn use_copy_manager(mut self, copy_manager: SharedCopyConstraintManager<F>) -> Self {
self.set_copy_manager(copy_manager);
self
}
/// Deep clone of `self`, where the underlying object of shared references in [SharedCopyConstraintManager] and [LookupAnyManager] are cloned.
pub fn deep_clone(&self) -> Self {
let cm: CopyConstraintManager<F> = self.core.copy_manager.lock().unwrap().clone();
let cm_ref = Arc::new(Mutex::new(cm));
let mut clone = self.clone().use_copy_manager(cm_ref.clone());
for lm in &mut clone.lookup_manager {
*lm = lm.deep_clone(cm_ref.clone());
}
clone
}
/// The log_2 size of the lookup table, if using.
pub fn lookup_bits(&self) -> Option<usize> {
self.config_params.lookup_bits
}
/// Set lookup bits
pub fn set_lookup_bits(&mut self, lookup_bits: usize) {
self.config_params.lookup_bits = Some(lookup_bits);
}
/// Returns new with lookup bits
pub fn use_lookup_bits(mut self, lookup_bits: usize) -> Self {
self.set_lookup_bits(lookup_bits);
self
}
/// Sets new `k` = log2 of domain
pub fn set_k(&mut self, k: usize) {
self.config_params.k = k;
}
/// Returns new with `k` set
pub fn use_k(mut self, k: usize) -> Self {
self.set_k(k);
self
}
/// Set the number of instance columns. This resizes `self.assigned_instances`.
pub fn set_instance_columns(&mut self, num_instance_columns: usize) {
self.config_params.num_instance_columns = num_instance_columns;
while self.assigned_instances.len() < num_instance_columns {
self.assigned_instances.push(vec![]);
}
assert_eq!(self.assigned_instances.len(), num_instance_columns);
}
/// Returns new with `self.assigned_instances` resized to specified number of instance columns.
pub fn use_instance_columns(mut self, num_instance_columns: usize) -> Self {
self.set_instance_columns(num_instance_columns);
self
}
/// Set config params
pub fn set_params(&mut self, params: BaseCircuitParams) {
self.set_instance_columns(params.num_instance_columns);
self.config_params = params;
}
/// Returns new with config params
pub fn use_params(mut self, params: BaseCircuitParams) -> Self {
self.set_params(params);
self
}
/// The break points of the circuit.
pub fn break_points(&self) -> MultiPhaseThreadBreakPoints {
self.core
.phase_manager
.iter()
.map(|pm| pm.break_points.borrow().as_ref().expect("break points not set").clone())
.collect()
}
/// Sets the break points of the circuit.
pub fn set_break_points(&mut self, break_points: MultiPhaseThreadBreakPoints) {
if break_points.is_empty() {
return;
}
self.core.touch(break_points.len() - 1);
for (pm, bp) in self.core.phase_manager.iter().zip_eq(break_points) {
*pm.break_points.borrow_mut() = Some(bp);
}
}
/// Returns new with break points
pub fn use_break_points(mut self, break_points: MultiPhaseThreadBreakPoints) -> Self {
self.set_break_points(break_points);
self
}
/// Returns if the circuit is only used for witness generation.
pub fn witness_gen_only(&self) -> bool {
self.core.witness_gen_only()
}
/// Creates a new [MultiPhaseCoreManager] with `use_unknown` flag set.
/// * `use_unknown`: If true, during key generation witness `Value`s are replaced with `Value::unknown()` for safety.
pub fn unknown(mut self, use_unknown: bool) -> Self {
self.core = self.core.unknown(use_unknown);
self
}
/// Clears state and copies, effectively resetting the circuit builder.
pub fn clear(&mut self) {
self.core.clear();
for lm in &mut self.lookup_manager {
lm.clear();
}
self.assigned_instances.iter_mut().for_each(|c| c.clear());
}
/// Returns a mutable reference to the [Context] of a gate thread. Spawns a new thread for the given phase, if none exists.
/// * `phase`: The challenge phase (as an index) of the gate thread.
pub fn main(&mut self, phase: usize) -> &mut Context<F> {
self.core.main(phase)
}
/// Returns [SinglePhaseCoreManager] with the virtual region with all core threads in the given phase.
pub fn pool(&mut self, phase: usize) -> &mut SinglePhaseCoreManager<F> {
self.core.phase_manager.get_mut(phase).unwrap()
}
/// Spawns a new thread for a new given `phase`. Returns a mutable reference to the [Context] of the new thread.
/// * `phase`: The phase (index) of the gate thread.
pub fn new_thread(&mut self, phase: usize) -> &mut Context<F> {
self.core.new_thread(phase)
}
/// Returns some statistics about the virtual region.
pub fn statistics(&self) -> RangeStatistics {
let gate = self.core.statistics();
let total_lookup_advice_per_phase = self.total_lookup_advice_per_phase();
RangeStatistics { gate, total_lookup_advice_per_phase }
}
fn total_lookup_advice_per_phase(&self) -> Vec<usize> {
self.lookup_manager.iter().map(|lm| lm.total_rows()).collect()
}
/// Auto-calculates configuration parameters for the circuit and sets them.
///
/// * `k`: The number of in the circuit (i.e. numeber of rows = 2<sup>k</sup>)
/// * `minimum_rows`: The minimum number of rows in the circuit that cannot be used for witness assignments and contain random `blinding factors` to ensure zk property, defaults to 0.
/// * `lookup_bits`: The fixed lookup table will consist of [0, 2<sup>lookup_bits</sup>)
pub fn calculate_params(&mut self, minimum_rows: Option<usize>) -> BaseCircuitParams {
let k = self.config_params.k;
let ni = self.config_params.num_instance_columns;
assert_ne!(k, 0, "k must be set");
let max_rows = (1 << k) - minimum_rows.unwrap_or(0);
let gate_params = self.core.calculate_params(k, minimum_rows);
let total_lookup_advice_per_phase = self.total_lookup_advice_per_phase();
let num_lookup_advice_per_phase = total_lookup_advice_per_phase
.iter()
.map(|count| (count + max_rows - 1) / max_rows)
.collect::<Vec<_>>();
let params = BaseCircuitParams {
k: gate_params.k,
num_advice_per_phase: gate_params.num_advice_per_phase,
num_fixed: gate_params.num_fixed,
num_lookup_advice_per_phase,
lookup_bits: self.lookup_bits(),
num_instance_columns: ni,
};
self.config_params = params.clone();
#[cfg(feature = "display")]
{
println!("Total range check advice cells to lookup per phase: {total_lookup_advice_per_phase:?}");
log::info!("Auto-calculated config params:\n {params:#?}");
}
params
}
/// Copies `assigned_instances` to the instance columns. Should only be called at the very end of
/// `synthesize` after virtual `assigned_instances` have been assigned to physical circuit.
pub fn assign_instances(
&self,
instance_columns: &[Column<Instance>],
mut layouter: impl Layouter<F>,
) {
if !self.core.witness_gen_only() {
// expose public instances
for (instances, instance_col) in self.assigned_instances.iter().zip_eq(instance_columns)
{
for (i, instance) in instances.iter().enumerate() {
let cell = instance.cell.unwrap();
let copy_manager = self.core.copy_manager.lock().unwrap();
let cell =
copy_manager.assigned_advices.get(&cell).expect("instance not assigned");
layouter.constrain_instance(*cell, *instance_col, i);
}
}
}
}
/// Creates a new [RangeChip] sharing the same [LookupAnyManager]s as `self`.
pub fn range_chip(&self) -> RangeChip<F> {
RangeChip::new(
self.config_params.lookup_bits.expect("lookup bits not set"),
self.lookup_manager.clone(),
)
}
/// Copies the queued cells to be range looked up in phase `phase` to special advice lookup columns
/// using [LookupAnyManager].
///
/// ## Special case
/// Just for [RangeConfig], we have special handling for the case where there is a single (physical)
/// advice column in [super::FlexGateConfig]. In this case, `RangeConfig` does not create extra lookup advice columns,
/// the single advice column has lookup enabled, and there is a selector to toggle when lookup should
/// be turned on.
pub fn assign_lookups_in_phase(
&self,
config: &RangeConfig<F>,
region: &mut Region<F>,
phase: usize,
) {
let lookup_manager = self.lookup_manager.get(phase).expect("too many phases");
if lookup_manager.total_rows() == 0 {
return;
}
if let Some(q_lookup) = config.q_lookup.get(phase).and_then(|q| *q) {
// if q_lookup is Some, that means there should be a single advice column and it has lookup enabled
assert_eq!(config.gate.basic_gates[phase].len(), 1);
if !self.witness_gen_only() {
let cells_to_lookup = lookup_manager.cells_to_lookup.lock().unwrap();
for advice in cells_to_lookup.iter().flat_map(|(_, advices)| advices) {
let cell = advice[0].cell.as_ref().unwrap();
let copy_manager = self.core.copy_manager.lock().unwrap();
let acell = copy_manager.assigned_advices[cell];
assert_eq!(
acell.column,
config.gate.basic_gates[phase][0].value.into(),
"lookup column does not match"
);
q_lookup.enable(region, acell.row_offset).unwrap();
}
}
} else {
let lookup_cols = config
.lookup_advice
.get(phase)
.expect("No special lookup advice columns")
.iter()
.map(|c| [*c])
.collect_vec();
lookup_manager.assign_raw(&lookup_cols, region);
}
let _ = lookup_manager.assigned.set(());
}
}
/// Basic statistics
pub struct RangeStatistics {
/// Number of advice cells for the basic gate and total constants used
pub gate: GateStatistics,
/// Total special advice cells that need to be looked up, per phase
pub total_lookup_advice_per_phase: Vec<usize>,
}
impl<F: ScalarField> AsRef<BaseCircuitBuilder<F>> for BaseCircuitBuilder<F> {
fn as_ref(&self) -> &BaseCircuitBuilder<F> {
self
}
}
impl<F: ScalarField> AsMut<BaseCircuitBuilder<F>> for BaseCircuitBuilder<F> {
fn as_mut(&mut self) -> &mut BaseCircuitBuilder<F> {
self
}
}