der/reader.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
//! Reader trait.
pub(crate) mod nested;
#[cfg(feature = "pem")]
pub(crate) mod pem;
pub(crate) mod slice;
pub(crate) use nested::NestedReader;
use crate::{
asn1::ContextSpecific, Decode, DecodeValue, Encode, Error, ErrorKind, FixedTag, Header, Length,
Result, Tag, TagMode, TagNumber,
};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
/// Reader trait which reads DER-encoded input.
pub trait Reader<'r>: Sized {
/// Get the length of the input.
fn input_len(&self) -> Length;
/// Peek at the next byte of input without modifying the cursor.
fn peek_byte(&self) -> Option<u8>;
/// Peek forward in the input data, attempting to decode a [`Header`] from
/// the data at the current position in the decoder.
///
/// Does not modify the decoder's state.
fn peek_header(&self) -> Result<Header>;
/// Get the position within the buffer.
fn position(&self) -> Length;
/// Attempt to read data borrowed directly from the input as a slice,
/// updating the internal cursor position.
///
/// # Returns
/// - `Ok(slice)` on success
/// - `Err(ErrorKind::Incomplete)` if there is not enough data
/// - `Err(ErrorKind::Reader)` if the reader can't borrow from the input
fn read_slice(&mut self, len: Length) -> Result<&'r [u8]>;
/// Attempt to decode an ASN.1 `CONTEXT-SPECIFIC` field with the
/// provided [`TagNumber`].
fn context_specific<T>(&mut self, tag_number: TagNumber, tag_mode: TagMode) -> Result<Option<T>>
where
T: DecodeValue<'r> + FixedTag,
{
Ok(match tag_mode {
TagMode::Explicit => ContextSpecific::<T>::decode_explicit(self, tag_number)?,
TagMode::Implicit => ContextSpecific::<T>::decode_implicit(self, tag_number)?,
}
.map(|field| field.value))
}
/// Decode a value which impls the [`Decode`] trait.
fn decode<T: Decode<'r>>(&mut self) -> Result<T> {
T::decode(self).map_err(|e| e.nested(self.position()))
}
/// Return an error with the given [`ErrorKind`], annotating it with
/// context about where the error occurred.
fn error(&mut self, kind: ErrorKind) -> Error {
kind.at(self.position())
}
/// Finish decoding, returning the given value if there is no
/// remaining data, or an error otherwise
fn finish<T>(self, value: T) -> Result<T> {
if !self.is_finished() {
Err(ErrorKind::TrailingData {
decoded: self.position(),
remaining: self.remaining_len(),
}
.at(self.position()))
} else {
Ok(value)
}
}
/// Have we read all of the input data?
fn is_finished(&self) -> bool {
self.remaining_len().is_zero()
}
/// Offset within the original input stream.
///
/// This is used for error reporting, and doesn't need to be overridden
/// by any reader implementations (except for the built-in `NestedReader`,
/// which consumes nested input messages)
fn offset(&self) -> Length {
self.position()
}
/// Peek at the next byte in the decoder and attempt to decode it as a
/// [`Tag`] value.
///
/// Does not modify the decoder's state.
fn peek_tag(&self) -> Result<Tag> {
match self.peek_byte() {
Some(byte) => byte.try_into(),
None => Err(Error::incomplete(self.input_len())),
}
}
/// Read a single byte.
fn read_byte(&mut self) -> Result<u8> {
let mut buf = [0];
self.read_into(&mut buf)?;
Ok(buf[0])
}
/// Attempt to read input data, writing it into the provided buffer, and
/// returning a slice on success.
///
/// # Returns
/// - `Ok(slice)` if there is sufficient data
/// - `Err(ErrorKind::Incomplete)` if there is not enough data
fn read_into<'o>(&mut self, buf: &'o mut [u8]) -> Result<&'o [u8]> {
let input = self.read_slice(buf.len().try_into()?)?;
buf.copy_from_slice(input);
Ok(buf)
}
/// Read nested data of the given length.
fn read_nested<'n, T, F>(&'n mut self, len: Length, f: F) -> Result<T>
where
F: FnOnce(&mut NestedReader<'n, Self>) -> Result<T>,
{
let mut reader = NestedReader::new(self, len)?;
let ret = f(&mut reader)?;
reader.finish(ret)
}
/// Read a byte vector of the given length.
#[cfg(feature = "alloc")]
fn read_vec(&mut self, len: Length) -> Result<Vec<u8>> {
let mut bytes = vec![0u8; usize::try_from(len)?];
self.read_into(&mut bytes)?;
Ok(bytes)
}
/// Get the number of bytes still remaining in the buffer.
fn remaining_len(&self) -> Length {
debug_assert!(self.position() <= self.input_len());
self.input_len().saturating_sub(self.position())
}
/// Read an ASN.1 `SEQUENCE`, creating a nested [`Reader`] for the body and
/// calling the provided closure with it.
fn sequence<'n, F, T>(&'n mut self, f: F) -> Result<T>
where
F: FnOnce(&mut NestedReader<'n, Self>) -> Result<T>,
{
let header = Header::decode(self)?;
header.tag.assert_eq(Tag::Sequence)?;
self.read_nested(header.length, f)
}
/// Obtain a slice of bytes contain a complete TLV production suitable for parsing later.
fn tlv_bytes(&mut self) -> Result<&'r [u8]> {
let header = self.peek_header()?;
let header_len = header.encoded_len()?;
self.read_slice((header_len + header.length)?)
}
}