halo2_proofs/circuit/floor_planner/v1/
strategy.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
use std::{
    cmp,
    collections::{BTreeSet, HashMap},
    ops::Range,
};

use super::{RegionColumn, RegionShape};
use crate::{circuit::RegionStart, plonk::Any};

/// A region allocated within a column.
#[derive(Clone, Default, Debug, PartialEq, Eq)]
struct AllocatedRegion {
    // The starting position of the region.
    start: usize,
    // The length of the region.
    length: usize,
}

impl Ord for AllocatedRegion {
    fn cmp(&self, other: &Self) -> cmp::Ordering {
        self.start.cmp(&other.start)
    }
}

impl PartialOrd for AllocatedRegion {
    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
        Some(self.cmp(other))
    }
}

/// An area of empty space within a column.
pub(crate) struct EmptySpace {
    // The starting position (inclusive) of the empty space.
    start: usize,
    // The ending position (exclusive) of the empty space, or `None` if unbounded.
    end: Option<usize>,
}

impl EmptySpace {
    pub(crate) fn range(&self) -> Option<Range<usize>> {
        self.end.map(|end| self.start..end)
    }
}

/// Allocated rows within a column.
///
/// This is a set of [a_start, a_end) pairs representing disjoint allocated intervals.
#[derive(Clone, Default, Debug)]
pub struct Allocations(BTreeSet<AllocatedRegion>);

impl Allocations {
    /// Returns the row that forms the unbounded unallocated interval [row, None).
    pub(crate) fn unbounded_interval_start(&self) -> usize {
        self.0
            .iter()
            .last()
            .map(|r| r.start + r.length)
            .unwrap_or(0)
    }

    /// Return all the *unallocated* nonempty intervals intersecting [start, end).
    ///
    /// `end = None` represents an unbounded end.
    pub(crate) fn free_intervals(
        &self,
        start: usize,
        end: Option<usize>,
    ) -> impl Iterator<Item = EmptySpace> + '_ {
        self.0
            .iter()
            .map(Some)
            .chain(Some(None))
            .scan(start, move |row, region| {
                Some(if let Some(region) = region {
                    if end.map(|end| region.start >= end).unwrap_or(false) {
                        None
                    } else {
                        let ret = if *row < region.start {
                            Some(EmptySpace {
                                start: *row,
                                end: Some(region.start),
                            })
                        } else {
                            None
                        };

                        *row = cmp::max(*row, region.start + region.length);

                        ret
                    }
                } else if end.map(|end| *row < end).unwrap_or(true) {
                    Some(EmptySpace { start: *row, end })
                } else {
                    None
                })
            })
            .flatten()
    }
}

/// Allocated rows within a circuit.
pub type CircuitAllocations = HashMap<RegionColumn, Allocations>;

/// - `start` is the current start row of the region (not of this column).
/// - `slack` is the maximum number of rows the start could be moved down, taking into
///   account prior columns.
fn first_fit_region(
    column_allocations: &mut CircuitAllocations,
    region_columns: &[RegionColumn],
    region_length: usize,
    start: usize,
    slack: Option<usize>,
) -> Option<usize> {
    let (c, remaining_columns) = match region_columns.split_first() {
        Some(cols) => cols,
        None => return Some(start),
    };
    let end = slack.map(|slack| start + region_length + slack);

    // Iterate over the unallocated non-empty intervals in c that intersect [start, end).
    for space in column_allocations
        .entry(*c)
        .or_default()
        .clone()
        .free_intervals(start, end)
    {
        // Do we have enough room for this column of the region in this interval?
        let s_slack = space
            .end
            .map(|end| (end as isize - space.start as isize) - region_length as isize);
        if let Some((slack, s_slack)) = slack.zip(s_slack) {
            assert!(s_slack <= slack as isize);
        }
        if s_slack.unwrap_or(0) >= 0 {
            let row = first_fit_region(
                column_allocations,
                remaining_columns,
                region_length,
                space.start,
                s_slack.map(|s| s as usize),
            );
            if let Some(row) = row {
                if let Some(end) = end {
                    assert!(row + region_length <= end);
                }
                column_allocations
                    .get_mut(c)
                    .unwrap()
                    .0
                    .insert(AllocatedRegion {
                        start: row,
                        length: region_length,
                    });
                return Some(row);
            }
        }
    }

    // No placement worked; the caller will need to try other possibilities.
    None
}

/// Positions the regions starting at the earliest row for which none of the columns are
/// in use, taking into account gaps between earlier regions.
fn slot_in(
    region_shapes: Vec<RegionShape>,
) -> (Vec<(RegionStart, RegionShape)>, CircuitAllocations) {
    // Tracks the empty regions for each column.
    let mut column_allocations: CircuitAllocations = Default::default();

    let regions = region_shapes
        .into_iter()
        .map(|region| {
            // Sort the region's columns to ensure determinism.
            // - An unstable sort is fine, because region.columns() returns a set.
            // - The sort order relies on Column's Ord implementation!
            let mut region_columns: Vec<_> = region.columns().iter().cloned().collect();
            region_columns.sort_unstable();

            let region_start = first_fit_region(
                &mut column_allocations,
                &region_columns,
                region.row_count(),
                0,
                None,
            )
            .expect("We can always fit a region somewhere");

            (region_start.into(), region)
        })
        .collect();

    // Return the column allocations for potential further processing.
    (regions, column_allocations)
}

/// Sorts the regions by advice area and then lays them out with the [`slot_in`] strategy.
pub fn slot_in_biggest_advice_first(
    region_shapes: Vec<RegionShape>,
) -> (Vec<RegionStart>, CircuitAllocations) {
    let mut sorted_regions: Vec<_> = region_shapes.into_iter().collect();
    sorted_regions.sort_unstable_by_key(|shape| {
        // Count the number of advice columns
        let advice_cols = shape
            .columns()
            .iter()
            .filter(|c| match c {
                RegionColumn::Column(c) => matches!(c.column_type(), Any::Advice),
                _ => false,
            })
            .count();
        // Sort by advice area (since this has the most contention).
        advice_cols * shape.row_count()
    });
    sorted_regions.reverse();

    // Lay out the sorted regions.
    let (mut regions, column_allocations) = slot_in(sorted_regions);

    // Un-sort the regions so they match the original indexing.
    regions.sort_unstable_by_key(|(_, region)| region.region_index().0);
    let regions = regions.into_iter().map(|(start, _)| start).collect();

    (regions, column_allocations)
}

#[test]
fn test_slot_in() {
    use crate::plonk::Column;

    let regions = vec![
        RegionShape {
            region_index: 0.into(),
            columns: vec![Column::new(0, Any::Advice), Column::new(1, Any::Advice)]
                .into_iter()
                .map(|a| a.into())
                .collect(),
            row_count: 15,
        },
        RegionShape {
            region_index: 1.into(),
            columns: vec![Column::new(2, Any::Advice)]
                .into_iter()
                .map(|a| a.into())
                .collect(),
            row_count: 10,
        },
        RegionShape {
            region_index: 2.into(),
            columns: vec![Column::new(2, Any::Advice), Column::new(0, Any::Advice)]
                .into_iter()
                .map(|a| a.into())
                .collect(),
            row_count: 10,
        },
    ];
    assert_eq!(
        slot_in(regions)
            .0
            .into_iter()
            .map(|(i, _)| i)
            .collect::<Vec<_>>(),
        vec![0.into(), 0.into(), 15.into()]
    );
}