halo2_proofs/circuit/floor_planner/v1/strategy.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
use std::{
cmp,
collections::{BTreeSet, HashMap},
ops::Range,
};
use super::{RegionColumn, RegionShape};
use crate::{circuit::RegionStart, plonk::Any};
/// A region allocated within a column.
#[derive(Clone, Default, Debug, PartialEq, Eq)]
struct AllocatedRegion {
// The starting position of the region.
start: usize,
// The length of the region.
length: usize,
}
impl Ord for AllocatedRegion {
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.start.cmp(&other.start)
}
}
impl PartialOrd for AllocatedRegion {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
/// An area of empty space within a column.
pub(crate) struct EmptySpace {
// The starting position (inclusive) of the empty space.
start: usize,
// The ending position (exclusive) of the empty space, or `None` if unbounded.
end: Option<usize>,
}
impl EmptySpace {
pub(crate) fn range(&self) -> Option<Range<usize>> {
self.end.map(|end| self.start..end)
}
}
/// Allocated rows within a column.
///
/// This is a set of [a_start, a_end) pairs representing disjoint allocated intervals.
#[derive(Clone, Default, Debug)]
pub struct Allocations(BTreeSet<AllocatedRegion>);
impl Allocations {
/// Returns the row that forms the unbounded unallocated interval [row, None).
pub(crate) fn unbounded_interval_start(&self) -> usize {
self.0
.iter()
.last()
.map(|r| r.start + r.length)
.unwrap_or(0)
}
/// Return all the *unallocated* nonempty intervals intersecting [start, end).
///
/// `end = None` represents an unbounded end.
pub(crate) fn free_intervals(
&self,
start: usize,
end: Option<usize>,
) -> impl Iterator<Item = EmptySpace> + '_ {
self.0
.iter()
.map(Some)
.chain(Some(None))
.scan(start, move |row, region| {
Some(if let Some(region) = region {
if end.map(|end| region.start >= end).unwrap_or(false) {
None
} else {
let ret = if *row < region.start {
Some(EmptySpace {
start: *row,
end: Some(region.start),
})
} else {
None
};
*row = cmp::max(*row, region.start + region.length);
ret
}
} else if end.map(|end| *row < end).unwrap_or(true) {
Some(EmptySpace { start: *row, end })
} else {
None
})
})
.flatten()
}
}
/// Allocated rows within a circuit.
pub type CircuitAllocations = HashMap<RegionColumn, Allocations>;
/// - `start` is the current start row of the region (not of this column).
/// - `slack` is the maximum number of rows the start could be moved down, taking into
/// account prior columns.
fn first_fit_region(
column_allocations: &mut CircuitAllocations,
region_columns: &[RegionColumn],
region_length: usize,
start: usize,
slack: Option<usize>,
) -> Option<usize> {
let (c, remaining_columns) = match region_columns.split_first() {
Some(cols) => cols,
None => return Some(start),
};
let end = slack.map(|slack| start + region_length + slack);
// Iterate over the unallocated non-empty intervals in c that intersect [start, end).
for space in column_allocations
.entry(*c)
.or_default()
.clone()
.free_intervals(start, end)
{
// Do we have enough room for this column of the region in this interval?
let s_slack = space
.end
.map(|end| (end as isize - space.start as isize) - region_length as isize);
if let Some((slack, s_slack)) = slack.zip(s_slack) {
assert!(s_slack <= slack as isize);
}
if s_slack.unwrap_or(0) >= 0 {
let row = first_fit_region(
column_allocations,
remaining_columns,
region_length,
space.start,
s_slack.map(|s| s as usize),
);
if let Some(row) = row {
if let Some(end) = end {
assert!(row + region_length <= end);
}
column_allocations
.get_mut(c)
.unwrap()
.0
.insert(AllocatedRegion {
start: row,
length: region_length,
});
return Some(row);
}
}
}
// No placement worked; the caller will need to try other possibilities.
None
}
/// Positions the regions starting at the earliest row for which none of the columns are
/// in use, taking into account gaps between earlier regions.
fn slot_in(
region_shapes: Vec<RegionShape>,
) -> (Vec<(RegionStart, RegionShape)>, CircuitAllocations) {
// Tracks the empty regions for each column.
let mut column_allocations: CircuitAllocations = Default::default();
let regions = region_shapes
.into_iter()
.map(|region| {
// Sort the region's columns to ensure determinism.
// - An unstable sort is fine, because region.columns() returns a set.
// - The sort order relies on Column's Ord implementation!
let mut region_columns: Vec<_> = region.columns().iter().cloned().collect();
region_columns.sort_unstable();
let region_start = first_fit_region(
&mut column_allocations,
®ion_columns,
region.row_count(),
0,
None,
)
.expect("We can always fit a region somewhere");
(region_start.into(), region)
})
.collect();
// Return the column allocations for potential further processing.
(regions, column_allocations)
}
/// Sorts the regions by advice area and then lays them out with the [`slot_in`] strategy.
pub fn slot_in_biggest_advice_first(
region_shapes: Vec<RegionShape>,
) -> (Vec<RegionStart>, CircuitAllocations) {
let mut sorted_regions: Vec<_> = region_shapes.into_iter().collect();
sorted_regions.sort_unstable_by_key(|shape| {
// Count the number of advice columns
let advice_cols = shape
.columns()
.iter()
.filter(|c| match c {
RegionColumn::Column(c) => matches!(c.column_type(), Any::Advice),
_ => false,
})
.count();
// Sort by advice area (since this has the most contention).
advice_cols * shape.row_count()
});
sorted_regions.reverse();
// Lay out the sorted regions.
let (mut regions, column_allocations) = slot_in(sorted_regions);
// Un-sort the regions so they match the original indexing.
regions.sort_unstable_by_key(|(_, region)| region.region_index().0);
let regions = regions.into_iter().map(|(start, _)| start).collect();
(regions, column_allocations)
}
#[test]
fn test_slot_in() {
use crate::plonk::Column;
let regions = vec![
RegionShape {
region_index: 0.into(),
columns: vec![Column::new(0, Any::Advice), Column::new(1, Any::Advice)]
.into_iter()
.map(|a| a.into())
.collect(),
row_count: 15,
},
RegionShape {
region_index: 1.into(),
columns: vec![Column::new(2, Any::Advice)]
.into_iter()
.map(|a| a.into())
.collect(),
row_count: 10,
},
RegionShape {
region_index: 2.into(),
columns: vec![Column::new(2, Any::Advice), Column::new(0, Any::Advice)]
.into_iter()
.map(|a| a.into())
.collect(),
row_count: 10,
},
];
assert_eq!(
slot_in(regions)
.0
.into_iter()
.map(|(i, _)| i)
.collect::<Vec<_>>(),
vec![0.into(), 0.into(), 15.into()]
);
}