halo2curves/ff_ext/inverse.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
use core::cmp::PartialEq;
use std::ops::{Add, Mul, Neg, Sub};
/// Big signed (B * L)-bit integer type, whose variables store
/// numbers in the two's complement code as arrays of B-bit chunks.
/// The ordering of the chunks in these arrays is little-endian.
/// The arithmetic operations for this type are wrapping ones.
#[derive(Clone)]
struct CInt<const B: usize, const L: usize>(pub [u64; L]);
impl<const B: usize, const L: usize> CInt<B, L> {
/// Mask, in which the B lowest bits are 1 and only they
pub const MASK: u64 = u64::MAX >> (64 - B);
/// Representation of -1
pub const MINUS_ONE: Self = Self([Self::MASK; L]);
/// Representation of 0
pub const ZERO: Self = Self([0; L]);
/// Representation of 1
pub const ONE: Self = {
let mut data = [0; L];
data[0] = 1;
Self(data)
};
/// Returns the result of applying B-bit right
/// arithmetical shift to the current number
pub fn shift(&self) -> Self {
let mut data = [0; L];
if self.is_negative() {
data[L - 1] = Self::MASK;
}
data[..L - 1].copy_from_slice(&self.0[1..]);
Self(data)
}
/// Returns the lowest B bits of the current number
pub fn lowest(&self) -> u64 {
self.0[0]
}
/// Returns "true" iff the current number is negative
pub fn is_negative(&self) -> bool {
self.0[L - 1] > (Self::MASK >> 1)
}
}
impl<const B: usize, const L: usize> PartialEq for CInt<B, L> {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl<const B: usize, const L: usize> Add for &CInt<B, L> {
type Output = CInt<B, L>;
fn add(self, other: Self) -> Self::Output {
let (mut data, mut carry) = ([0; L], 0);
for (i, d) in data.iter_mut().enumerate().take(L) {
let sum = self.0[i] + other.0[i] + carry;
*d = sum & CInt::<B, L>::MASK;
carry = sum >> B;
}
CInt::<B, L>(data)
}
}
impl<const B: usize, const L: usize> Add<&CInt<B, L>> for CInt<B, L> {
type Output = CInt<B, L>;
fn add(self, other: &Self) -> Self::Output {
&self + other
}
}
impl<const B: usize, const L: usize> Add for CInt<B, L> {
type Output = CInt<B, L>;
fn add(self, other: Self) -> Self::Output {
&self + &other
}
}
impl<const B: usize, const L: usize> Sub for &CInt<B, L> {
type Output = CInt<B, L>;
fn sub(self, other: Self) -> Self::Output {
// For the two's complement code the additive negation is the result of
// adding 1 to the bitwise inverted argument's representation. Thus, for
// any encoded integers x and y we have x - y = x + !y + 1, where "!" is
// the bitwise inversion and addition is done according to the rules of
// the code. The algorithm below uses this formula and is the modified
// addition algorithm, where the carry flag is initialized with 1 and
// the chunks of the second argument are bitwise inverted
let (mut data, mut carry) = ([0; L], 1);
for (i, d) in data.iter_mut().enumerate().take(L) {
let sum = self.0[i] + (other.0[i] ^ CInt::<B, L>::MASK) + carry;
*d = sum & CInt::<B, L>::MASK;
carry = sum >> B;
}
CInt::<B, L>(data)
}
}
impl<const B: usize, const L: usize> Sub<&CInt<B, L>> for CInt<B, L> {
type Output = CInt<B, L>;
fn sub(self, other: &Self) -> Self::Output {
&self - other
}
}
impl<const B: usize, const L: usize> Sub for CInt<B, L> {
type Output = CInt<B, L>;
fn sub(self, other: Self) -> Self::Output {
&self - &other
}
}
impl<const B: usize, const L: usize> Neg for &CInt<B, L> {
type Output = CInt<B, L>;
fn neg(self) -> Self::Output {
// For the two's complement code the additive negation is the result
// of adding 1 to the bitwise inverted argument's representation
let (mut data, mut carry) = ([0; L], 1);
for (i, d) in data.iter_mut().enumerate().take(L) {
let sum = (self.0[i] ^ CInt::<B, L>::MASK) + carry;
*d = sum & CInt::<B, L>::MASK;
carry = sum >> B;
}
CInt::<B, L>(data)
}
}
impl<const B: usize, const L: usize> Neg for CInt<B, L> {
type Output = CInt<B, L>;
fn neg(self) -> Self::Output {
-&self
}
}
impl<const B: usize, const L: usize> Mul for &CInt<B, L> {
type Output = CInt<B, L>;
fn mul(self, other: Self) -> Self::Output {
let mut data = [0; L];
for i in 0..L {
let mut carry = 0;
for k in 0..(L - i) {
let sum = (data[i + k] as u128)
+ (carry as u128)
+ (self.0[i] as u128) * (other.0[k] as u128);
data[i + k] = sum as u64 & CInt::<B, L>::MASK;
carry = (sum >> B) as u64;
}
}
CInt::<B, L>(data)
}
}
impl<const B: usize, const L: usize> Mul<&CInt<B, L>> for CInt<B, L> {
type Output = CInt<B, L>;
fn mul(self, other: &Self) -> Self::Output {
&self * other
}
}
impl<const B: usize, const L: usize> Mul for CInt<B, L> {
type Output = CInt<B, L>;
fn mul(self, other: Self) -> Self::Output {
&self * &other
}
}
impl<const B: usize, const L: usize> Mul<i64> for &CInt<B, L> {
type Output = CInt<B, L>;
fn mul(self, other: i64) -> Self::Output {
let mut data = [0; L];
// If the short multiplicand is non-negative, the standard multiplication
// algorithm is performed. Otherwise, the product of the additively negated
// multiplicands is found as follows. Since for the two's complement code
// the additive negation is the result of adding 1 to the bitwise inverted
// argument's representation, for any encoded integers x and y we have
// x * y = (-x) * (-y) = (!x + 1) * (-y) = !x * (-y) + (-y), where "!" is
// the bitwise inversion and arithmetic operations are performed according
// to the rules of the code. If the short multiplicand is negative, the
// algorithm below uses this formula by substituting the short multiplicand
// for y and turns into the modified standard multiplication algorithm,
// where the carry flag is initialized with the additively negated short
// multiplicand and the chunks of the long multiplicand are bitwise inverted
let (other, mut carry, mask) = if other < 0 {
(-other, -other as u64, CInt::<B, L>::MASK)
} else {
(other, 0, 0)
};
for (i, d) in data.iter_mut().enumerate().take(L) {
let sum = (carry as u128) + ((self.0[i] ^ mask) as u128) * (other as u128);
*d = sum as u64 & CInt::<B, L>::MASK;
carry = (sum >> B) as u64;
}
CInt::<B, L>(data)
}
}
impl<const B: usize, const L: usize> Mul<i64> for CInt<B, L> {
type Output = CInt<B, L>;
fn mul(self, other: i64) -> Self::Output {
&self * other
}
}
impl<const B: usize, const L: usize> Mul<&CInt<B, L>> for i64 {
type Output = CInt<B, L>;
fn mul(self, other: &CInt<B, L>) -> Self::Output {
other * self
}
}
impl<const B: usize, const L: usize> Mul<CInt<B, L>> for i64 {
type Output = CInt<B, L>;
fn mul(self, other: CInt<B, L>) -> Self::Output {
other * self
}
}
/// Type of the modular multiplicative inverter based on the Bernstein-Yang method.
/// The inverter can be created for a specified modulus M and adjusting parameter A
/// to compute the adjusted multiplicative inverses of positive integers, i.e. for
/// computing (1 / x) * A (mod M) for a positive integer x.
///
/// The adjusting parameter allows computing the multiplicative inverses in the case of
/// using the Montgomery representation for the input or the expected output. If R is
/// the Montgomery factor, the multiplicative inverses in the appropriate representation
/// can be computed provided that the value of A is chosen as follows:
/// - A = 1, if both the input and the expected output are in the standard form
/// - A = R^2 mod M, if both the input and the expected output are in the Montgomery form
/// - A = R mod M, if either the input or the expected output is in the Montgomery form,
/// but not both of them
///
/// The public methods of this type receive and return unsigned big integers as arrays of
/// 64-bit chunks, the ordering of which is little-endian. Both the modulus and the integer
/// to be inverted should not exceed 2 ^ (62 * L - 64)
///
/// For better understanding the implementation, the following resources are recommended:
/// - D. Bernstein, B.-Y. Yang, "Fast constant-time gcd computation and modular inversion",
/// https://gcd.cr.yp.to/safegcd-20190413.pdf
/// - P. Wuille, "The safegcd implementation in libsecp256k1 explained",
/// https://github.com/bitcoin-core/secp256k1/blob/master/doc/safegcd_implementation.md
pub struct BYInverter<const L: usize> {
/// Modulus
modulus: CInt<62, L>,
/// Adjusting parameter
adjuster: CInt<62, L>,
/// Multiplicative inverse of the modulus modulo 2^62
inverse: i64,
}
/// Type of the Bernstein-Yang transition matrix multiplied by 2^62
type Matrix = [[i64; 2]; 2];
impl<const L: usize> BYInverter<L> {
/// Returns the Bernstein-Yang transition matrix multiplied by 2^62 and the new value
/// of the delta variable for the 62 basic steps of the Bernstein-Yang method, which
/// are to be performed sequentially for specified initial values of f, g and delta
fn jump(f: &CInt<62, L>, g: &CInt<62, L>, mut delta: i64) -> (i64, Matrix) {
let (mut steps, mut f, mut g) = (62, f.lowest() as i64, g.lowest() as i128);
let mut t: Matrix = [[1, 0], [0, 1]];
loop {
let zeros = steps.min(g.trailing_zeros() as i64);
(steps, delta, g) = (steps - zeros, delta + zeros, g >> zeros);
t[0] = [t[0][0] << zeros, t[0][1] << zeros];
if steps == 0 {
break;
}
if delta > 0 {
(delta, f, g) = (-delta, g as i64, -f as i128);
(t[0], t[1]) = (t[1], [-t[0][0], -t[0][1]]);
}
// The formula (3 * x) xor 28 = -1 / x (mod 32) for an odd integer x
// in the two's complement code has been derived from the formula
// (3 * x) xor 2 = 1 / x (mod 32) attributed to Peter Montgomery
let mask = (1 << steps.min(1 - delta).min(5)) - 1;
let w = (g as i64).wrapping_mul(f.wrapping_mul(3) ^ 28) & mask;
t[1] = [t[0][0] * w + t[1][0], t[0][1] * w + t[1][1]];
g += w as i128 * f as i128;
}
(delta, t)
}
/// Returns the updated values of the variables f and g for specified initial ones and Bernstein-Yang transition
/// matrix multiplied by 2^62. The returned vector is "matrix * (f, g)' / 2^62", where "'" is the transpose operator
fn fg(f: CInt<62, L>, g: CInt<62, L>, t: Matrix) -> (CInt<62, L>, CInt<62, L>) {
(
(t[0][0] * &f + t[0][1] * &g).shift(),
(t[1][0] * &f + t[1][1] * &g).shift(),
)
}
/// Returns the updated values of the variables d and e for specified initial ones and Bernstein-Yang transition
/// matrix multiplied by 2^62. The returned vector is congruent modulo M to "matrix * (d, e)' / 2^62 (mod M)",
/// where M is the modulus the inverter was created for and "'" stands for the transpose operator. Both the input
/// and output values lie in the interval (-2 * M, M)
fn de(&self, d: CInt<62, L>, e: CInt<62, L>, t: Matrix) -> (CInt<62, L>, CInt<62, L>) {
let mask = CInt::<62, L>::MASK as i64;
let mut md = t[0][0] * d.is_negative() as i64 + t[0][1] * e.is_negative() as i64;
let mut me = t[1][0] * d.is_negative() as i64 + t[1][1] * e.is_negative() as i64;
let cd = t[0][0]
.wrapping_mul(d.lowest() as i64)
.wrapping_add(t[0][1].wrapping_mul(e.lowest() as i64))
& mask;
let ce = t[1][0]
.wrapping_mul(d.lowest() as i64)
.wrapping_add(t[1][1].wrapping_mul(e.lowest() as i64))
& mask;
md -= (self.inverse.wrapping_mul(cd).wrapping_add(md)) & mask;
me -= (self.inverse.wrapping_mul(ce).wrapping_add(me)) & mask;
let cd = t[0][0] * &d + t[0][1] * &e + md * &self.modulus;
let ce = t[1][0] * &d + t[1][1] * &e + me * &self.modulus;
(cd.shift(), ce.shift())
}
/// Returns either "value (mod M)" or "-value (mod M)", where M is the modulus the
/// inverter was created for, depending on "negate", which determines the presence
/// of "-" in the used formula. The input integer lies in the interval (-2 * M, M)
fn norm(&self, mut value: CInt<62, L>, negate: bool) -> CInt<62, L> {
if value.is_negative() {
value = value + &self.modulus;
}
if negate {
value = -value;
}
if value.is_negative() {
value = value + &self.modulus;
}
value
}
/// Returns a big unsigned integer as an array of O-bit chunks, which is equal modulo
/// 2 ^ (O * S) to the input big unsigned integer stored as an array of I-bit chunks.
/// The ordering of the chunks in these arrays is little-endian
const fn convert<const I: usize, const O: usize, const S: usize>(input: &[u64]) -> [u64; S] {
// This function is defined because the method "min" of the usize type is not constant
const fn min(a: usize, b: usize) -> usize {
if a > b {
b
} else {
a
}
}
let (total, mut output, mut bits) = (min(input.len() * I, S * O), [0; S], 0);
while bits < total {
let (i, o) = (bits % I, bits % O);
output[bits / O] |= (input[bits / I] >> i) << o;
bits += min(I - i, O - o);
}
let mask = u64::MAX >> (64 - O);
let mut filled = total / O + if total % O > 0 { 1 } else { 0 };
while filled > 0 {
filled -= 1;
output[filled] &= mask;
}
output
}
/// Returns the multiplicative inverse of the argument modulo 2^62. The implementation is based
/// on the Hurchalla's method for computing the multiplicative inverse modulo a power of two.
/// For better understanding the implementation, the following paper is recommended:
/// J. Hurchalla, "An Improved Integer Multiplicative Inverse (modulo 2^w)",
/// https://arxiv.org/pdf/2204.04342.pdf
const fn inv(value: u64) -> i64 {
let x = value.wrapping_mul(3) ^ 2;
let y = 1u64.wrapping_sub(x.wrapping_mul(value));
let (x, y) = (x.wrapping_mul(y.wrapping_add(1)), y.wrapping_mul(y));
let (x, y) = (x.wrapping_mul(y.wrapping_add(1)), y.wrapping_mul(y));
let (x, y) = (x.wrapping_mul(y.wrapping_add(1)), y.wrapping_mul(y));
(x.wrapping_mul(y.wrapping_add(1)) & CInt::<62, L>::MASK) as i64
}
/// Creates the inverter for specified modulus and adjusting parameter
pub const fn new(modulus: &[u64], adjuster: &[u64]) -> Self {
Self {
modulus: CInt::<62, L>(Self::convert::<64, 62, L>(modulus)),
adjuster: CInt::<62, L>(Self::convert::<64, 62, L>(adjuster)),
inverse: Self::inv(modulus[0]),
}
}
/// Returns either the adjusted modular multiplicative inverse for the argument or None
/// depending on invertibility of the argument, i.e. its coprimality with the modulus
pub fn invert<const S: usize>(&self, value: &[u64]) -> Option<[u64; S]> {
let (mut d, mut e) = (CInt::ZERO, self.adjuster.clone());
let mut g = CInt::<62, L>(Self::convert::<64, 62, L>(value));
let (mut delta, mut f) = (1, self.modulus.clone());
let mut matrix;
while g != CInt::ZERO {
(delta, matrix) = Self::jump(&f, &g, delta);
(f, g) = Self::fg(f, g, matrix);
(d, e) = self.de(d, e, matrix);
}
// At this point the absolute value of "f" equals the greatest common divisor
// of the integer to be inverted and the modulus the inverter was created for.
// Thus, if "f" is neither 1 nor -1, then the sought inverse does not exist
let antiunit = f == CInt::MINUS_ONE;
if (f != CInt::ONE) && !antiunit {
return None;
}
Some(Self::convert::<62, 64, S>(&self.norm(d, antiunit).0))
}
}