use core::borrow::Borrow;
use core::fmt;
use core::iter::Sum;
use core::ops::{Add, Mul, Neg, Sub};
use ff::Field;
use group::{
prime::{PrimeCurve, PrimeCurveAffine, PrimeGroup},
Curve, Group, GroupEncoding, UncompressedEncoding,
};
use pasta_curves::arithmetic::{Coordinates, CurveAffine, CurveExt};
use rand_core::RngCore;
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
use crate::CurveAffineExt;
use crate::{
impl_add_binop_specify_output, impl_binops_additive, impl_binops_additive_specify_output,
impl_binops_multiplicative, impl_binops_multiplicative_mixed, impl_sub_binop_specify_output,
};
use super::fp::Fp;
use super::fp2::Fp2;
use super::hash_to_curve::{ExpandMsgXmd, HashToCurve};
use super::Scalar;
#[cfg(feature = "alloc")]
use group::WnafGroup;
#[cfg_attr(docsrs, doc(cfg(feature = "groups")))]
#[derive(Copy, Clone, Debug)]
pub struct G2Affine {
pub x: Fp2,
pub y: Fp2,
infinity: Choice,
}
impl Default for G2Affine {
fn default() -> G2Affine {
G2Affine::identity()
}
}
#[cfg(feature = "zeroize")]
impl zeroize::DefaultIsZeroes for G2Affine {}
impl fmt::Display for G2Affine {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{self:?}")
}
}
impl<'a> From<&'a G2Projective> for G2Affine {
fn from(p: &'a G2Projective) -> G2Affine {
let zinv = p.z.invert().unwrap_or(Fp2::zero());
let x = p.x * zinv;
let y = p.y * zinv;
let tmp = G2Affine {
x,
y,
infinity: Choice::from(0u8),
};
G2Affine::conditional_select(&tmp, &G2Affine::identity(), zinv.is_zero())
}
}
impl From<G2Projective> for G2Affine {
fn from(p: G2Projective) -> G2Affine {
G2Affine::from(&p)
}
}
impl ConstantTimeEq for G2Affine {
fn ct_eq(&self, other: &Self) -> Choice {
(self.infinity & other.infinity)
| ((!self.infinity)
& (!other.infinity)
& self.x.ct_eq(&other.x)
& self.y.ct_eq(&other.y))
}
}
impl ConditionallySelectable for G2Affine {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
G2Affine {
x: Fp2::conditional_select(&a.x, &b.x, choice),
y: Fp2::conditional_select(&a.y, &b.y, choice),
infinity: Choice::conditional_select(&a.infinity, &b.infinity, choice),
}
}
}
impl Eq for G2Affine {}
impl PartialEq for G2Affine {
#[inline]
fn eq(&self, other: &Self) -> bool {
bool::from(self.ct_eq(other))
}
}
impl<'a> Neg for &'a G2Affine {
type Output = G2Affine;
#[inline]
fn neg(self) -> G2Affine {
G2Affine {
x: self.x,
y: Fp2::conditional_select(&-self.y, &Fp2::one(), self.infinity),
infinity: self.infinity,
}
}
}
impl Neg for G2Affine {
type Output = G2Affine;
#[inline]
fn neg(self) -> G2Affine {
-&self
}
}
impl<'a, 'b> Add<&'b G2Projective> for &'a G2Affine {
type Output = G2Projective;
#[inline]
fn add(self, rhs: &'b G2Projective) -> G2Projective {
rhs.add_mixed(self)
}
}
impl<'a, 'b> Add<&'b G2Affine> for &'a G2Projective {
type Output = G2Projective;
#[inline]
fn add(self, rhs: &'b G2Affine) -> G2Projective {
self.add_mixed(rhs)
}
}
impl<'a, 'b> Sub<&'b G2Projective> for &'a G2Affine {
type Output = G2Projective;
#[inline]
fn sub(self, rhs: &'b G2Projective) -> G2Projective {
self + (-rhs)
}
}
impl<'a, 'b> Sub<&'b G2Affine> for &'a G2Projective {
type Output = G2Projective;
#[inline]
fn sub(self, rhs: &'b G2Affine) -> G2Projective {
self + (-rhs)
}
}
impl Add<G2Affine> for G2Affine {
type Output = G2Projective;
fn add(self, rhs: G2Affine) -> Self::Output {
self.to_curve() + rhs.to_curve()
}
}
impl Sub<G2Affine> for G2Affine {
type Output = G2Projective;
fn sub(self, rhs: G2Affine) -> Self::Output {
self + -rhs
}
}
impl<T> Sum<T> for G2Projective
where
T: Borrow<G2Projective>,
{
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = T>,
{
iter.fold(Self::identity(), |acc, item| acc + item.borrow())
}
}
impl_binops_additive!(G2Projective, G2Affine);
impl_binops_additive_specify_output!(G2Affine, G2Projective, G2Projective);
const B: Fp2 = Fp2 {
c0: Fp::from_raw_unchecked([
0xaa27_0000_000c_fff3,
0x53cc_0032_fc34_000a,
0x478f_e97a_6b0a_807f,
0xb1d3_7ebe_e6ba_24d7,
0x8ec9_733b_bf78_ab2f,
0x09d6_4551_3d83_de7e,
]),
c1: Fp::from_raw_unchecked([
0xaa27_0000_000c_fff3,
0x53cc_0032_fc34_000a,
0x478f_e97a_6b0a_807f,
0xb1d3_7ebe_e6ba_24d7,
0x8ec9_733b_bf78_ab2f,
0x09d6_4551_3d83_de7e,
]),
};
const B3: Fp2 = Fp2::add(&Fp2::add(&B, &B), &B);
impl G2Affine {
pub fn identity() -> G2Affine {
G2Affine {
x: Fp2::zero(),
y: Fp2::one(),
infinity: Choice::from(1u8),
}
}
pub fn random(mut rng: impl RngCore) -> Self {
loop {
let x = Fp2::random(&mut rng);
let ysign = (rng.next_u32() % 2) as u8;
let x3 = x.square() * x;
let y = (x3 + B).sqrt();
if let Some(y) = Option::<Fp2>::from(y) {
let sign = y.to_bytes()[0] & 1;
let y = if ysign ^ sign == 0 { y } else { -y };
let p = G2Affine {
x,
y,
infinity: 0.into(),
};
let p = p.to_curve();
return p.clear_cofactor().to_affine();
}
}
}
pub fn generator() -> G2Affine {
G2Affine {
x: Fp2 {
c0: Fp::from_raw_unchecked([
0xf5f2_8fa2_0294_0a10,
0xb3f5_fb26_87b4_961a,
0xa1a8_93b5_3e2a_e580,
0x9894_999d_1a3c_aee9,
0x6f67_b763_1863_366b,
0x0581_9192_4350_bcd7,
]),
c1: Fp::from_raw_unchecked([
0xa5a9_c075_9e23_f606,
0xaaa0_c59d_bccd_60c3,
0x3bb1_7e18_e286_7806,
0x1b1a_b6cc_8541_b367,
0xc2b6_ed0e_f215_8547,
0x1192_2a09_7360_edf3,
]),
},
y: Fp2 {
c0: Fp::from_raw_unchecked([
0x4c73_0af8_6049_4c4a,
0x597c_fa1f_5e36_9c5a,
0xe7e6_856c_aa0a_635a,
0xbbef_b5e9_6e0d_495f,
0x07d3_a975_f0ef_25a2,
0x0083_fd8e_7e80_dae5,
]),
c1: Fp::from_raw_unchecked([
0xadc0_fc92_df64_b05d,
0x18aa_270a_2b14_61dc,
0x86ad_ac6a_3be4_eba0,
0x7949_5c4e_c93d_a33a,
0xe717_5850_a43c_caed,
0x0b2b_c2a1_63de_1bf2,
]),
},
infinity: Choice::from(0u8),
}
}
pub fn to_compressed_be(&self) -> [u8; 96] {
let x = Fp2::conditional_select(&self.x, &Fp2::zero(), self.infinity);
let mut res = [0; 96];
res[0..48].copy_from_slice(&x.c1.to_bytes_be()[..]);
res[48..96].copy_from_slice(&x.c0.to_bytes_be()[..]);
res[0] |= 1u8 << 7;
res[0] |= u8::conditional_select(&0u8, &(1u8 << 6), self.infinity);
res[0] |= u8::conditional_select(
&0u8,
&(1u8 << 5),
(!self.infinity) & self.y.lexicographically_largest(),
);
res
}
pub fn to_compressed_le(&self) -> [u8; 96] {
let mut bytes = self.to_compressed_be();
bytes.reverse();
bytes
}
pub fn to_uncompressed_be(&self) -> [u8; 192] {
let mut res = [0; 192];
let x = Fp2::conditional_select(&self.x, &Fp2::zero(), self.infinity);
let y = Fp2::conditional_select(&self.y, &Fp2::zero(), self.infinity);
res[0..48].copy_from_slice(&x.c1.to_bytes_be()[..]);
res[48..96].copy_from_slice(&x.c0.to_bytes_be()[..]);
res[96..144].copy_from_slice(&y.c1.to_bytes_be()[..]);
res[144..192].copy_from_slice(&y.c0.to_bytes_be()[..]);
res[0] |= u8::conditional_select(&0u8, &(1u8 << 6), self.infinity);
res
}
pub fn to_uncompressed_le(&self) -> [u8; 192] {
let mut res = [0; 192];
let x = Fp2::conditional_select(&self.x, &Fp2::zero(), self.infinity);
let y = Fp2::conditional_select(&self.y, &Fp2::zero(), self.infinity);
res[0..48].copy_from_slice(&x.c1.to_bytes()[..]);
res[48..96].copy_from_slice(&x.c0.to_bytes()[..]);
res[96..144].copy_from_slice(&y.c1.to_bytes()[..]);
res[144..192].copy_from_slice(&y.c0.to_bytes()[..]);
res[0] |= u8::conditional_select(&0u8, &(1u8 << 6), self.infinity);
res
}
pub fn from_uncompressed_be(bytes: &[u8; 192]) -> CtOption<Self> {
Self::from_uncompressed_unchecked_be(bytes)
.and_then(|p| CtOption::new(p, p.is_on_curve() & p.is_torsion_free()))
}
pub fn from_uncompressed_unchecked_be(bytes: &[u8; 192]) -> CtOption<Self> {
let compression_flag_set = Choice::from((bytes[0] >> 7) & 1);
let infinity_flag_set = Choice::from((bytes[0] >> 6) & 1);
let sort_flag_set = Choice::from((bytes[0] >> 5) & 1);
let xc1 = {
let mut tmp = [0; 48];
tmp.copy_from_slice(&bytes[0..48]);
tmp[0] &= 0b0001_1111;
Fp::from_bytes_be(&tmp)
};
let xc0 = {
let mut tmp = [0; 48];
tmp.copy_from_slice(&bytes[48..96]);
Fp::from_bytes_be(&tmp)
};
let yc1 = {
let mut tmp = [0; 48];
tmp.copy_from_slice(&bytes[96..144]);
Fp::from_bytes_be(&tmp)
};
let yc0 = {
let mut tmp = [0; 48];
tmp.copy_from_slice(&bytes[144..192]);
Fp::from_bytes_be(&tmp)
};
xc1.and_then(|xc1| {
xc0.and_then(|xc0| {
yc1.and_then(|yc1| {
yc0.and_then(|yc0| {
let x = Fp2 {
c0: xc0,
c1: xc1
};
let y = Fp2 {
c0: yc0,
c1: yc1
};
let p = G2Affine::conditional_select(
&G2Affine {
x,
y,
infinity: infinity_flag_set,
},
&G2Affine::identity(),
infinity_flag_set,
);
CtOption::new(
p,
((!infinity_flag_set) | (infinity_flag_set & x.is_zero() & y.is_zero())) &
(!compression_flag_set) &
(!sort_flag_set),
)
})
})
})
})
}
pub fn from_compressed_be(bytes: &[u8; 96]) -> CtOption<Self> {
Self::from_compressed_unchecked_be(bytes)
.and_then(|p| CtOption::new(p, p.is_torsion_free()))
}
pub fn from_compressed_unchecked_be(bytes: &[u8; 96]) -> CtOption<Self> {
let compression_flag_set = Choice::from((bytes[0] >> 7) & 1);
let infinity_flag_set = Choice::from((bytes[0] >> 6) & 1);
let sort_flag_set = Choice::from((bytes[0] >> 5) & 1);
let xc1 = {
let mut tmp = [0; 48];
tmp.copy_from_slice(&bytes[0..48]);
tmp[0] &= 0b0001_1111;
Fp::from_bytes_be(&tmp)
};
let xc0 = {
let mut tmp = [0; 48];
tmp.copy_from_slice(&bytes[48..96]);
Fp::from_bytes_be(&tmp)
};
xc1.and_then(|xc1| {
xc0.and_then(|xc0| {
let x = Fp2 { c0: xc0, c1: xc1 };
CtOption::new(
G2Affine::identity(),
infinity_flag_set & compression_flag_set & (!sort_flag_set) & x.is_zero(), )
.or_else(|| {
((x.square() * x) + B).sqrt().and_then(|y| {
let y = Fp2::conditional_select(
&y,
&-y,
y.lexicographically_largest() ^ sort_flag_set,
);
CtOption::new(
G2Affine {
x,
y,
infinity: infinity_flag_set,
},
(!infinity_flag_set) & compression_flag_set, )
})
})
})
})
}
pub fn from_uncompressed_le(bytes: &[u8; 192]) -> CtOption<Self> {
Self::from_uncompressed_unchecked_le(bytes)
.and_then(|p| CtOption::new(p, p.is_on_curve() & p.is_torsion_free()))
}
pub fn from_uncompressed_unchecked_le(bytes: &[u8; 192]) -> CtOption<Self> {
let infinity_flag_set = Choice::from((bytes[0] >> 6) & 1);
let xc1 = {
let mut tmp = [0; 48];
tmp.copy_from_slice(&bytes[0..48]);
Fp::from_bytes(&tmp)
};
let xc0 = {
let mut tmp = [0; 48];
tmp.copy_from_slice(&bytes[48..96]);
Fp::from_bytes(&tmp)
};
let yc1 = {
let mut tmp = [0; 48];
tmp.copy_from_slice(&bytes[96..144]);
Fp::from_bytes(&tmp)
};
let yc0 = {
let mut tmp = [0; 48];
tmp.copy_from_slice(&bytes[144..192]);
Fp::from_bytes(&tmp)
};
xc1.and_then(|xc1| {
xc0.and_then(|xc0| {
yc1.and_then(|yc1| {
yc0.and_then(|yc0| {
let x = Fp2 { c0: xc0, c1: xc1 };
let y = Fp2 { c0: yc0, c1: yc1 };
let p = G2Affine::conditional_select(
&G2Affine {
x,
y,
infinity: infinity_flag_set,
},
&G2Affine::identity(),
infinity_flag_set,
);
CtOption::new(
p,
(!infinity_flag_set) | (x.is_zero() & y.is_zero()),
)
})
})
})
})
}
pub fn from_compressed_unchecked_le(bytes: &[u8; 96]) -> CtOption<Self> {
let mut bytes = *bytes;
bytes.reverse();
Self::from_compressed_unchecked_be(&bytes)
}
pub fn from_compressed_le(bytes: &[u8; 96]) -> CtOption<Self> {
Self::from_compressed_unchecked_le(bytes)
.and_then(|p| CtOption::new(p, p.is_torsion_free()))
}
#[inline]
pub fn is_identity(&self) -> Choice {
self.infinity
}
pub fn is_torsion_free(&self) -> Choice {
let p = G2Projective::from(self);
p.psi().ct_eq(&p.mul_by_x())
}
pub fn is_on_curve(&self) -> Choice {
(self.y.square() - (self.x.square() * self.x)).ct_eq(&B) | self.infinity
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "groups")))]
#[derive(Copy, Clone, Debug)]
pub struct G2Projective {
pub(crate) x: Fp2,
pub(crate) y: Fp2,
pub(crate) z: Fp2,
}
impl Default for G2Projective {
fn default() -> G2Projective {
G2Projective::identity()
}
}
#[cfg(feature = "zeroize")]
impl zeroize::DefaultIsZeroes for G2Projective {}
impl fmt::Display for G2Projective {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{self:?}")
}
}
impl<'a> From<&'a G2Affine> for G2Projective {
fn from(p: &'a G2Affine) -> G2Projective {
G2Projective {
x: p.x,
y: p.y,
z: Fp2::conditional_select(&Fp2::one(), &Fp2::zero(), p.infinity),
}
}
}
impl From<G2Affine> for G2Projective {
fn from(p: G2Affine) -> G2Projective {
G2Projective::from(&p)
}
}
impl ConstantTimeEq for G2Projective {
fn ct_eq(&self, other: &Self) -> Choice {
let x1 = self.x * other.z;
let x2 = other.x * self.z;
let y1 = self.y * other.z;
let y2 = other.y * self.z;
let self_is_zero = self.z.is_zero();
let other_is_zero = other.z.is_zero();
(self_is_zero & other_is_zero) | ((!self_is_zero) & (!other_is_zero) & x1.ct_eq(&x2) & y1.ct_eq(&y2))
}
}
impl ConditionallySelectable for G2Projective {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
G2Projective {
x: Fp2::conditional_select(&a.x, &b.x, choice),
y: Fp2::conditional_select(&a.y, &b.y, choice),
z: Fp2::conditional_select(&a.z, &b.z, choice),
}
}
}
impl Eq for G2Projective {}
impl PartialEq for G2Projective {
#[inline]
fn eq(&self, other: &Self) -> bool {
bool::from(self.ct_eq(other))
}
}
impl<'a> Neg for &'a G2Projective {
type Output = G2Projective;
#[inline]
fn neg(self) -> G2Projective {
G2Projective {
x: self.x,
y: -self.y,
z: self.z,
}
}
}
impl Neg for G2Projective {
type Output = G2Projective;
#[inline]
fn neg(self) -> G2Projective {
-&self
}
}
impl<'a, 'b> Add<&'b G2Projective> for &'a G2Projective {
type Output = G2Projective;
#[inline]
fn add(self, rhs: &'b G2Projective) -> G2Projective {
self.add(rhs)
}
}
impl<'a, 'b> Sub<&'b G2Projective> for &'a G2Projective {
type Output = G2Projective;
#[inline]
fn sub(self, rhs: &'b G2Projective) -> G2Projective {
self + (-rhs)
}
}
impl<'a, 'b> Mul<&'b Scalar> for &'a G2Projective {
type Output = G2Projective;
fn mul(self, other: &'b Scalar) -> Self::Output {
self.multiply(&other.to_bytes())
}
}
impl<'a, 'b> Mul<&'b G2Projective> for &'a Scalar {
type Output = G2Projective;
#[inline]
fn mul(self, rhs: &'b G2Projective) -> Self::Output {
rhs * self
}
}
impl<'a, 'b> Mul<&'b Scalar> for &'a G2Affine {
type Output = G2Projective;
fn mul(self, other: &'b Scalar) -> Self::Output {
G2Projective::from(self).multiply(&other.to_bytes())
}
}
impl<'a, 'b> Mul<&'b G2Affine> for &'a Scalar {
type Output = G2Projective;
#[inline]
fn mul(self, rhs: &'b G2Affine) -> Self::Output {
rhs * self
}
}
impl_binops_additive!(G2Projective, G2Projective);
impl_binops_multiplicative!(G2Projective, Scalar);
impl_binops_multiplicative_mixed!(G2Affine, Scalar, G2Projective);
impl_binops_multiplicative_mixed!(Scalar, G2Affine, G2Projective);
impl_binops_multiplicative_mixed!(Scalar, G2Projective, G2Projective);
#[inline(always)]
fn mul_by_3b(x: Fp2) -> Fp2 {
x * B3
}
impl G2Projective {
pub fn identity() -> G2Projective {
G2Projective {
x: Fp2::zero(),
y: Fp2::one(),
z: Fp2::zero(),
}
}
pub fn generator() -> G2Projective {
G2Projective {
x: Fp2 {
c0: Fp::from_raw_unchecked([
0xf5f2_8fa2_0294_0a10,
0xb3f5_fb26_87b4_961a,
0xa1a8_93b5_3e2a_e580,
0x9894_999d_1a3c_aee9,
0x6f67_b763_1863_366b,
0x0581_9192_4350_bcd7,
]),
c1: Fp::from_raw_unchecked([
0xa5a9_c075_9e23_f606,
0xaaa0_c59d_bccd_60c3,
0x3bb1_7e18_e286_7806,
0x1b1a_b6cc_8541_b367,
0xc2b6_ed0e_f215_8547,
0x1192_2a09_7360_edf3,
]),
},
y: Fp2 {
c0: Fp::from_raw_unchecked([
0x4c73_0af8_6049_4c4a,
0x597c_fa1f_5e36_9c5a,
0xe7e6_856c_aa0a_635a,
0xbbef_b5e9_6e0d_495f,
0x07d3_a975_f0ef_25a2,
0x0083_fd8e_7e80_dae5,
]),
c1: Fp::from_raw_unchecked([
0xadc0_fc92_df64_b05d,
0x18aa_270a_2b14_61dc,
0x86ad_ac6a_3be4_eba0,
0x7949_5c4e_c93d_a33a,
0xe717_5850_a43c_caed,
0x0b2b_c2a1_63de_1bf2,
]),
},
z: Fp2::one(),
}
}
pub fn double(&self) -> G2Projective {
let t0 = self.y.square();
let z3 = t0 + t0;
let z3 = z3 + z3;
let z3 = z3 + z3;
let t1 = self.y * self.z;
let t2 = self.z.square();
let t2 = mul_by_3b(t2);
let x3 = t2 * z3;
let y3 = t0 + t2;
let z3 = t1 * z3;
let t1 = t2 + t2;
let t2 = t1 + t2;
let t0 = t0 - t2;
let y3 = t0 * y3;
let y3 = x3 + y3;
let t1 = self.x * self.y;
let x3 = t0 * t1;
let x3 = x3 + x3;
let tmp = G2Projective {
x: x3,
y: y3,
z: z3,
};
G2Projective::conditional_select(&tmp, &G2Projective::identity(), self.is_identity())
}
pub fn add(&self, rhs: &G2Projective) -> G2Projective {
let t0 = self.x * rhs.x;
let t1 = self.y * rhs.y;
let t2 = self.z * rhs.z;
let t3 = self.x + self.y;
let t4 = rhs.x + rhs.y;
let t3 = t3 * t4;
let t4 = t0 + t1;
let t3 = t3 - t4;
let t4 = self.y + self.z;
let x3 = rhs.y + rhs.z;
let t4 = t4 * x3;
let x3 = t1 + t2;
let t4 = t4 - x3;
let x3 = self.x + self.z;
let y3 = rhs.x + rhs.z;
let x3 = x3 * y3;
let y3 = t0 + t2;
let y3 = x3 - y3;
let x3 = t0 + t0;
let t0 = x3 + t0;
let t2 = mul_by_3b(t2);
let z3 = t1 + t2;
let t1 = t1 - t2;
let y3 = mul_by_3b(y3);
let x3 = t4 * y3;
let t2 = t3 * t1;
let x3 = t2 - x3;
let y3 = y3 * t0;
let t1 = t1 * z3;
let y3 = t1 + y3;
let t0 = t0 * t3;
let z3 = z3 * t4;
let z3 = z3 + t0;
G2Projective {
x: x3,
y: y3,
z: z3,
}
}
pub fn add_mixed(&self, rhs: &G2Affine) -> G2Projective {
let t0 = self.x * rhs.x;
let t1 = self.y * rhs.y;
let t3 = rhs.x + rhs.y;
let t4 = self.x + self.y;
let t3 = t3 * t4;
let t4 = t0 + t1;
let t3 = t3 - t4;
let t4 = rhs.y * self.z;
let t4 = t4 + self.y;
let y3 = rhs.x * self.z;
let y3 = y3 + self.x;
let x3 = t0 + t0;
let t0 = x3 + t0;
let t2 = mul_by_3b(self.z);
let z3 = t1 + t2;
let t1 = t1 - t2;
let y3 = mul_by_3b(y3);
let x3 = t4 * y3;
let t2 = t3 * t1;
let x3 = t2 - x3;
let y3 = y3 * t0;
let t1 = t1 * z3;
let y3 = t1 + y3;
let t0 = t0 * t3;
let z3 = z3 * t4;
let z3 = z3 + t0;
let tmp = G2Projective {
x: x3,
y: y3,
z: z3,
};
G2Projective::conditional_select(&tmp, self, rhs.is_identity())
}
fn multiply(&self, by: &[u8]) -> G2Projective {
let mut acc = G2Projective::identity();
for bit in by
.iter()
.rev()
.flat_map(|byte| (0..8).rev().map(move |i| Choice::from((byte >> i) & 1u8)))
.skip(1)
{
acc = acc.double();
acc = G2Projective::conditional_select(&acc, &(acc + self), bit);
}
acc
}
fn psi(&self) -> G2Projective {
let psi_coeff_x = Fp2 {
c0: Fp::zero(),
c1: Fp::from_raw_unchecked([
0x890dc9e4867545c3,
0x2af322533285a5d5,
0x50880866309b7e2c,
0xa20d1b8c7e881024,
0x14e4f04fe2db9068,
0x14e56d3f1564853a,
]),
};
let psi_coeff_y = Fp2 {
c0: Fp::from_raw_unchecked([
0x3e2f585da55c9ad1,
0x4294213d86c18183,
0x382844c88b623732,
0x92ad2afd19103e18,
0x1d794e4fac7cf0b9,
0x0bd592fc7d825ec8,
]),
c1: Fp::from_raw_unchecked([
0x7bcfa7a25aa30fda,
0xdc17dec12a927e7c,
0x2f088dd86b4ebef1,
0xd1ca2087da74d4a7,
0x2da2596696cebc1d,
0x0e2b7eedbbfd87d2,
]),
};
G2Projective {
x: self.x.frobenius_map() * psi_coeff_x,
y: self.y.frobenius_map() * psi_coeff_y,
z: self.z.frobenius_map(),
}
}
fn psi2(&self) -> G2Projective {
let psi2_coeff_x = Fp2 {
c0: Fp::from_raw_unchecked([
0xcd03c9e48671f071,
0x5dab22461fcda5d2,
0x587042afd3851b95,
0x8eb60ebe01bacb9e,
0x03f97d6e83d050d2,
0x18f0206554638741,
]),
c1: Fp::zero(),
};
G2Projective {
x: self.x * psi2_coeff_x,
y: self.y.neg(),
z: self.z,
}
}
fn mul_by_x(&self) -> G2Projective {
let mut xself = G2Projective::identity();
let mut x = super::BLS_X >> 1;
let mut acc = *self;
while x != 0 {
acc = acc.double();
if x % 2 == 1 {
xself += acc;
}
x >>= 1;
}
if super::BLS_X_IS_NEGATIVE {
xself = -xself;
}
xself
}
pub fn clear_cofactor(&self) -> G2Projective {
let t1 = self.mul_by_x(); let t2 = self.psi(); self.double().psi2() + (t1 + t2).mul_by_x() - t1 - t2 - self }
pub fn batch_normalize(p: &[Self], q: &mut [G2Affine]) {
assert_eq!(p.len(), q.len());
let mut acc = Fp2::one();
for (p, q) in p.iter().zip(q.iter_mut()) {
q.x = acc;
acc = Fp2::conditional_select(&(acc * p.z), &acc, p.is_identity());
}
acc = acc.invert().unwrap();
for (p, q) in p.iter().rev().zip(q.iter_mut().rev()) {
let skip = p.is_identity();
let tmp = q.x * acc;
acc = Fp2::conditional_select(&(acc * p.z), &acc, skip);
q.x = p.x * tmp;
q.y = p.y * tmp;
q.infinity = Choice::from(0u8);
*q = G2Affine::conditional_select(q, &G2Affine::identity(), skip);
}
}
#[inline]
pub fn is_identity(&self) -> Choice {
self.z.is_zero()
}
pub fn is_on_curve(&self) -> Choice {
(self.y.square() * self.z).ct_eq(&(self.x.square() * self.x + self.z.square() * self.z * B))
| self.z.is_zero()
}
}
#[derive(Clone, Copy)]
pub struct G2Compressed([u8; 96]);
impl fmt::Debug for G2Compressed {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0[..].fmt(f)
}
}
impl Default for G2Compressed {
fn default() -> Self {
G2Compressed([0; 96])
}
}
#[cfg(feature = "zeroize")]
impl zeroize::DefaultIsZeroes for G2Compressed {}
impl AsRef<[u8]> for G2Compressed {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl AsMut<[u8]> for G2Compressed {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0
}
}
impl ConstantTimeEq for G2Compressed {
fn ct_eq(&self, other: &Self) -> Choice {
self.0.ct_eq(&other.0)
}
}
impl Eq for G2Compressed {}
impl PartialEq for G2Compressed {
#[inline]
fn eq(&self, other: &Self) -> bool {
bool::from(self.ct_eq(other))
}
}
impl TryFrom<&[u8]> for G2Compressed {
type Error = std::array::TryFromSliceError;
fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
Ok(G2Compressed(value.try_into()?))
}
}
#[derive(Clone, Copy)]
pub struct G2Uncompressed([u8; 192]);
impl fmt::Debug for G2Uncompressed {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0[..].fmt(f)
}
}
impl Default for G2Uncompressed {
fn default() -> Self {
G2Uncompressed([0; 192])
}
}
#[cfg(feature = "zeroize")]
impl zeroize::DefaultIsZeroes for G2Uncompressed {}
impl AsRef<[u8]> for G2Uncompressed {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl AsMut<[u8]> for G2Uncompressed {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0
}
}
impl ConstantTimeEq for G2Uncompressed {
fn ct_eq(&self, other: &Self) -> Choice {
self.0.ct_eq(&other.0)
}
}
impl Eq for G2Uncompressed {}
impl PartialEq for G2Uncompressed {
#[inline]
fn eq(&self, other: &Self) -> bool {
bool::from(self.ct_eq(other))
}
}
impl TryFrom<&[u8]> for G2Uncompressed {
type Error = std::array::TryFromSliceError;
fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
Ok(G2Uncompressed(value.try_into()?))
}
}
impl Group for G2Projective {
type Scalar = Scalar;
fn random(mut rng: impl RngCore) -> Self {
loop {
let x = Fp2::random(&mut rng);
let flip_sign = rng.next_u32() % 2 != 0;
let p = ((x.square() * x) + B).sqrt().map(|y| G2Affine {
x,
y: if flip_sign { -y } else { y },
infinity: 0.into(),
});
if p.is_some().into() {
let p = p.unwrap().to_curve().clear_cofactor();
if bool::from(!p.is_identity()) {
return p;
}
}
}
}
fn identity() -> Self {
Self::identity()
}
fn generator() -> Self {
Self::generator()
}
fn is_identity(&self) -> Choice {
self.is_identity()
}
#[must_use]
fn double(&self) -> Self {
self.double()
}
}
#[cfg(feature = "alloc")]
impl WnafGroup for G2Projective {
fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize {
const RECOMMENDATIONS: [usize; 11] = [1, 3, 8, 20, 47, 126, 260, 826, 1501, 4555, 84071];
let mut ret = 4;
for r in &RECOMMENDATIONS {
if num_scalars > *r {
ret += 1;
} else {
break;
}
}
ret
}
}
impl PrimeGroup for G2Projective {}
impl Curve for G2Projective {
type AffineRepr = G2Affine;
fn batch_normalize(p: &[Self], q: &mut [Self::AffineRepr]) {
Self::batch_normalize(p, q);
}
fn to_affine(&self) -> Self::AffineRepr {
self.into()
}
}
impl PrimeCurve for G2Projective {
type Affine = G2Affine;
}
impl PrimeCurveAffine for G2Affine {
type Scalar = Scalar;
type Curve = G2Projective;
fn identity() -> Self {
Self::identity()
}
fn generator() -> Self {
Self::generator()
}
fn is_identity(&self) -> Choice {
self.is_identity()
}
fn to_curve(&self) -> Self::Curve {
self.into()
}
}
impl GroupEncoding for G2Projective {
type Repr = G2Compressed;
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
G2Affine::from_bytes(bytes).map(Self::from)
}
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
G2Affine::from_bytes_unchecked(bytes).map(Self::from)
}
fn to_bytes(&self) -> Self::Repr {
G2Affine::from(self).to_bytes()
}
}
impl GroupEncoding for G2Affine {
type Repr = G2Compressed;
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
Self::from_compressed_le(&bytes.0)
}
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
Self::from_compressed_unchecked_le(&bytes.0)
}
fn to_bytes(&self) -> Self::Repr {
G2Compressed(self.to_compressed_le())
}
}
impl UncompressedEncoding for G2Affine {
type Uncompressed = G2Uncompressed;
fn from_uncompressed(bytes: &Self::Uncompressed) -> CtOption<Self> {
Self::from_uncompressed_le(&bytes.0)
}
fn from_uncompressed_unchecked(bytes: &Self::Uncompressed) -> CtOption<Self> {
Self::from_uncompressed_unchecked_le(&bytes.0)
}
fn to_uncompressed(&self) -> Self::Uncompressed {
G2Uncompressed(self.to_uncompressed_le())
}
}
impl CurveExt for G2Projective {
type ScalarExt = Scalar;
type Base = Fp2;
type AffineExt = G2Affine;
const CURVE_ID: &'static str = "Bls12-381";
fn endo(&self) -> Self {
unimplemented!()
}
fn jacobian_coordinates(&self) -> (Fp2, Fp2, Fp2) {
let x = self.x * self.z;
let y = self.y * self.z.square();
(x, y, self.z)
}
fn hash_to_curve<'a>(domain_prefix: &'a str) -> Box<dyn Fn(&[u8]) -> Self + 'a> {
Box::new(|msg| {
<G2Projective as HashToCurve<ExpandMsgXmd<sha2::Sha256>>>::hash_to_curve(
msg,
domain_prefix.as_bytes(),
)
})
}
fn is_on_curve(&self) -> Choice {
unimplemented!()
}
fn b() -> Self::Base {
B
}
fn a() -> Self::Base {
Self::Base::ZERO
}
fn new_jacobian(x: Self::Base, y: Self::Base, z: Self::Base) -> CtOption<Self> {
let z_inv = z.invert().unwrap_or(Fp2::zero());
let p_x = x * z_inv;
let p_y = y * z_inv.square();
let p = Self {
x: p_x,
y: Fp2::conditional_select(&p_y, &Fp2::ONE, z.is_zero()),
z,
};
CtOption::new(p, p.is_on_curve())
}
}
impl CurveAffine for G2Affine {
type ScalarExt = super::Scalar;
type Base = super::fp2::Fp2;
type CurveExt = G2Projective;
fn coordinates(&self) -> CtOption<Coordinates<Self>> {
Coordinates::from_xy(self.x, self.y)
}
fn from_xy(x: Self::Base, y: Self::Base) -> CtOption<Self> {
let p: G2Affine = Self {
x,
y,
infinity: x.ct_eq(&Self::Base::ZERO) & y.ct_eq(&Self::Base::ZERO),
};
CtOption::new(p, p.is_on_curve())
}
fn is_on_curve(&self) -> Choice {
self.is_on_curve()
}
fn a() -> Self::Base {
Self::Base::ZERO
}
fn b() -> Self::Base {
B
}
}
impl CurveAffineExt for G2Affine {
fn into_coordinates(self) -> (Self::Base, Self::Base) {
(self.x, self.y)
}
}
#[test]
fn test_is_on_curve() {
assert!(bool::from(G2Affine::identity().is_on_curve()));
assert!(bool::from(G2Affine::generator().is_on_curve()));
assert!(bool::from(G2Projective::identity().is_on_curve()));
assert!(bool::from(G2Projective::generator().is_on_curve()));
let z = Fp2 {
c0: Fp::from_raw_unchecked([
0xba7a_fa1f_9a6f_e250,
0xfa0f_5b59_5eaf_e731,
0x3bdc_4776_94c3_06e7,
0x2149_be4b_3949_fa24,
0x64aa_6e06_49b2_078c,
0x12b1_08ac_3364_3c3e,
]),
c1: Fp::from_raw_unchecked([
0x1253_25df_3d35_b5a8,
0xdc46_9ef5_555d_7fe3,
0x02d7_16d2_4431_06a9,
0x05a1_db59_a6ff_37d0,
0x7cf7_784e_5300_bb8f,
0x16a8_8922_c7a5_e844,
]),
};
let gen = G2Affine::generator();
let mut test = G2Projective {
x: gen.x * z,
y: gen.y * z,
z,
};
assert!(bool::from(test.is_on_curve()));
test.x = z;
assert!(!bool::from(test.is_on_curve()));
}
#[test]
#[allow(clippy::eq_op)]
fn test_affine_point_equality() {
let a = G2Affine::generator();
let b = G2Affine::identity();
assert!(a == a);
assert!(b == b);
assert!(a != b);
assert!(b != a);
}
#[test]
#[allow(clippy::eq_op)]
fn test_projective_point_equality() {
let a = G2Projective::generator();
let b = G2Projective::identity();
assert!(a == a);
assert!(b == b);
assert!(a != b);
assert!(b != a);
let z = Fp2 {
c0: Fp::from_raw_unchecked([
0xba7a_fa1f_9a6f_e250,
0xfa0f_5b59_5eaf_e731,
0x3bdc_4776_94c3_06e7,
0x2149_be4b_3949_fa24,
0x64aa_6e06_49b2_078c,
0x12b1_08ac_3364_3c3e,
]),
c1: Fp::from_raw_unchecked([
0x1253_25df_3d35_b5a8,
0xdc46_9ef5_555d_7fe3,
0x02d7_16d2_4431_06a9,
0x05a1_db59_a6ff_37d0,
0x7cf7_784e_5300_bb8f,
0x16a8_8922_c7a5_e844,
]),
};
let mut c = G2Projective {
x: a.x * z,
y: a.y * z,
z,
};
assert!(bool::from(c.is_on_curve()));
assert!(a == c);
assert!(b != c);
assert!(c == a);
assert!(c != b);
c.y = -c.y;
assert!(bool::from(c.is_on_curve()));
assert!(a != c);
assert!(b != c);
assert!(c != a);
assert!(c != b);
c.y = -c.y;
c.x = z;
assert!(!bool::from(c.is_on_curve()));
assert!(a != b);
assert!(a != c);
assert!(b != c);
}
#[test]
fn test_conditionally_select_affine() {
let a = G2Affine::generator();
let b = G2Affine::identity();
assert_eq!(G2Affine::conditional_select(&a, &b, Choice::from(0u8)), a);
assert_eq!(G2Affine::conditional_select(&a, &b, Choice::from(1u8)), b);
}
#[test]
fn test_conditionally_select_projective() {
let a = G2Projective::generator();
let b = G2Projective::identity();
assert_eq!(
G2Projective::conditional_select(&a, &b, Choice::from(0u8)),
a
);
assert_eq!(
G2Projective::conditional_select(&a, &b, Choice::from(1u8)),
b
);
}
#[test]
fn test_projective_to_affine() {
let a = G2Projective::generator();
let b = G2Projective::identity();
assert!(bool::from(G2Affine::from(a).is_on_curve()));
assert!(!bool::from(G2Affine::from(a).is_identity()));
assert!(bool::from(G2Affine::from(b).is_on_curve()));
assert!(bool::from(G2Affine::from(b).is_identity()));
let z = Fp2 {
c0: Fp::from_raw_unchecked([
0xba7a_fa1f_9a6f_e250,
0xfa0f_5b59_5eaf_e731,
0x3bdc_4776_94c3_06e7,
0x2149_be4b_3949_fa24,
0x64aa_6e06_49b2_078c,
0x12b1_08ac_3364_3c3e,
]),
c1: Fp::from_raw_unchecked([
0x1253_25df_3d35_b5a8,
0xdc46_9ef5_555d_7fe3,
0x02d7_16d2_4431_06a9,
0x05a1_db59_a6ff_37d0,
0x7cf7_784e_5300_bb8f,
0x16a8_8922_c7a5_e844,
]),
};
let c = G2Projective {
x: a.x * z,
y: a.y * z,
z,
};
assert_eq!(G2Affine::from(c), G2Affine::generator());
}
#[test]
fn test_affine_to_projective() {
let a = G2Affine::generator();
let b = G2Affine::identity();
assert!(bool::from(G2Projective::from(a).is_on_curve()));
assert!(!bool::from(G2Projective::from(a).is_identity()));
assert!(bool::from(G2Projective::from(b).is_on_curve()));
assert!(bool::from(G2Projective::from(b).is_identity()));
}
#[test]
fn test_doubling() {
{
let tmp = G2Projective::identity().double();
assert!(bool::from(tmp.is_identity()));
assert!(bool::from(tmp.is_on_curve()));
}
{
let tmp = G2Projective::generator().double();
assert!(!bool::from(tmp.is_identity()));
assert!(bool::from(tmp.is_on_curve()));
assert_eq!(
G2Affine::from(tmp),
G2Affine {
x: Fp2 {
c0: Fp::from_raw_unchecked([
0xe9d9_e2da_9620_f98b,
0x54f1_1993_46b9_7f36,
0x3db3_b820_376b_ed27,
0xcfdb_31c9_b0b6_4f4c,
0x41d7_c127_8635_4493,
0x0571_0794_c255_c064,
]),
c1: Fp::from_raw_unchecked([
0xd6c1_d3ca_6ea0_d06e,
0xda0c_bd90_5595_489f,
0x4f53_52d4_3479_221d,
0x8ade_5d73_6f8c_97e0,
0x48cc_8433_925e_f70e,
0x08d7_ea71_ea91_ef81,
]),
},
y: Fp2 {
c0: Fp::from_raw_unchecked([
0x15ba_26eb_4b0d_186f,
0x0d08_6d64_b7e9_e01e,
0xc8b8_48dd_652f_4c78,
0xeecf_46a6_123b_ae4f,
0x255e_8dd8_b6dc_812a,
0x1641_42af_21dc_f93f,
]),
c1: Fp::from_raw_unchecked([
0xf9b4_a1a8_9598_4db4,
0xd417_b114_cccf_f748,
0x6856_301f_c89f_086e,
0x41c7_7787_8931_e3da,
0x3556_b155_066a_2105,
0x00ac_f7d3_25cb_89cf,
]),
},
infinity: Choice::from(0u8)
}
);
}
}
#[test]
fn test_projective_addition() {
{
let a = G2Projective::identity();
let b = G2Projective::identity();
let c = a + b;
assert!(bool::from(c.is_identity()));
assert!(bool::from(c.is_on_curve()));
}
{
let a = G2Projective::identity();
let mut b = G2Projective::generator();
{
let z = Fp2 {
c0: Fp::from_raw_unchecked([
0xba7a_fa1f_9a6f_e250,
0xfa0f_5b59_5eaf_e731,
0x3bdc_4776_94c3_06e7,
0x2149_be4b_3949_fa24,
0x64aa_6e06_49b2_078c,
0x12b1_08ac_3364_3c3e,
]),
c1: Fp::from_raw_unchecked([
0x1253_25df_3d35_b5a8,
0xdc46_9ef5_555d_7fe3,
0x02d7_16d2_4431_06a9,
0x05a1_db59_a6ff_37d0,
0x7cf7_784e_5300_bb8f,
0x16a8_8922_c7a5_e844,
]),
};
b = G2Projective {
x: b.x * z,
y: b.y * z,
z,
};
}
let c = a + b;
assert!(!bool::from(c.is_identity()));
assert!(bool::from(c.is_on_curve()));
assert!(c == G2Projective::generator());
}
{
let a = G2Projective::identity();
let mut b = G2Projective::generator();
{
let z = Fp2 {
c0: Fp::from_raw_unchecked([
0xba7a_fa1f_9a6f_e250,
0xfa0f_5b59_5eaf_e731,
0x3bdc_4776_94c3_06e7,
0x2149_be4b_3949_fa24,
0x64aa_6e06_49b2_078c,
0x12b1_08ac_3364_3c3e,
]),
c1: Fp::from_raw_unchecked([
0x1253_25df_3d35_b5a8,
0xdc46_9ef5_555d_7fe3,
0x02d7_16d2_4431_06a9,
0x05a1_db59_a6ff_37d0,
0x7cf7_784e_5300_bb8f,
0x16a8_8922_c7a5_e844,
]),
};
b = G2Projective {
x: b.x * z,
y: b.y * z,
z,
};
}
let c = b + a;
assert!(!bool::from(c.is_identity()));
assert!(bool::from(c.is_on_curve()));
assert!(c == G2Projective::generator());
}
{
let a = G2Projective::generator().double().double(); let b = G2Projective::generator().double(); let c = a + b;
let mut d = G2Projective::generator();
for _ in 0..5 {
d += G2Projective::generator();
}
assert!(!bool::from(c.is_identity()));
assert!(bool::from(c.is_on_curve()));
assert!(!bool::from(d.is_identity()));
assert!(bool::from(d.is_on_curve()));
assert_eq!(c, d);
}
{
let beta = Fp2 {
c0: Fp::from_raw_unchecked([
0xcd03_c9e4_8671_f071,
0x5dab_2246_1fcd_a5d2,
0x5870_42af_d385_1b95,
0x8eb6_0ebe_01ba_cb9e,
0x03f9_7d6e_83d0_50d2,
0x18f0_2065_5463_8741,
]),
c1: Fp::zero(),
};
let beta = beta.square();
let a = G2Projective::generator().double().double();
let b = G2Projective {
x: a.x * beta,
y: -a.y,
z: a.z,
};
assert!(bool::from(a.is_on_curve()));
assert!(bool::from(b.is_on_curve()));
let c = a + b;
assert_eq!(
G2Affine::from(c),
G2Affine::from(G2Projective {
x: Fp2 {
c0: Fp::from_raw_unchecked([
0x705a_bc79_9ca7_73d3,
0xfe13_2292_c1d4_bf08,
0xf37e_ce3e_07b2_b466,
0x887e_1c43_f447_e301,
0x1e09_70d0_33bc_77e8,
0x1985_c81e_20a6_93f2,
]),
c1: Fp::from_raw_unchecked([
0x1d79_b25d_b36a_b924,
0x2394_8e4d_5296_39d3,
0x471b_a7fb_0d00_6297,
0x2c36_d4b4_465d_c4c0,
0x82bb_c3cf_ec67_f538,
0x051d_2728_b67b_f952,
])
},
y: Fp2 {
c0: Fp::from_raw_unchecked([
0x41b1_bbf6_576c_0abf,
0xb6cc_9371_3f7a_0f9a,
0x6b65_b43e_48f3_f01f,
0xfb7a_4cfc_af81_be4f,
0x3e32_dadc_6ec2_2cb6,
0x0bb0_fc49_d798_07e3,
]),
c1: Fp::from_raw_unchecked([
0x7d13_9778_8f5f_2ddf,
0xab29_0714_4ff0_d8e8,
0x5b75_73e0_cdb9_1f92,
0x4cb8_932d_d31d_af28,
0x62bb_fac6_db05_2a54,
0x11f9_5c16_d14c_3bbe,
])
},
z: Fp2::one()
})
);
assert!(!bool::from(c.is_identity()));
assert!(bool::from(c.is_on_curve()));
}
}
#[test]
fn test_mixed_addition() {
{
let a = G2Affine::identity();
let b = G2Projective::identity();
let c = a + b;
assert!(bool::from(c.is_identity()));
assert!(bool::from(c.is_on_curve()));
}
{
let a = G2Affine::identity();
let mut b = G2Projective::generator();
{
let z = Fp2 {
c0: Fp::from_raw_unchecked([
0xba7a_fa1f_9a6f_e250,
0xfa0f_5b59_5eaf_e731,
0x3bdc_4776_94c3_06e7,
0x2149_be4b_3949_fa24,
0x64aa_6e06_49b2_078c,
0x12b1_08ac_3364_3c3e,
]),
c1: Fp::from_raw_unchecked([
0x1253_25df_3d35_b5a8,
0xdc46_9ef5_555d_7fe3,
0x02d7_16d2_4431_06a9,
0x05a1_db59_a6ff_37d0,
0x7cf7_784e_5300_bb8f,
0x16a8_8922_c7a5_e844,
]),
};
b = G2Projective {
x: b.x * z,
y: b.y * z,
z,
};
}
let c = a + b;
assert!(!bool::from(c.is_identity()));
assert!(bool::from(c.is_on_curve()));
assert!(c == G2Projective::generator());
}
{
let a = G2Affine::identity();
let mut b = G2Projective::generator();
{
let z = Fp2 {
c0: Fp::from_raw_unchecked([
0xba7a_fa1f_9a6f_e250,
0xfa0f_5b59_5eaf_e731,
0x3bdc_4776_94c3_06e7,
0x2149_be4b_3949_fa24,
0x64aa_6e06_49b2_078c,
0x12b1_08ac_3364_3c3e,
]),
c1: Fp::from_raw_unchecked([
0x1253_25df_3d35_b5a8,
0xdc46_9ef5_555d_7fe3,
0x02d7_16d2_4431_06a9,
0x05a1_db59_a6ff_37d0,
0x7cf7_784e_5300_bb8f,
0x16a8_8922_c7a5_e844,
]),
};
b = G2Projective {
x: b.x * z,
y: b.y * z,
z,
};
}
let c = b + a;
assert!(!bool::from(c.is_identity()));
assert!(bool::from(c.is_on_curve()));
assert!(c == G2Projective::generator());
}
{
let a = G2Projective::generator().double().double(); let b = G2Projective::generator().double(); let c = a + b;
let mut d = G2Projective::generator();
for _ in 0..5 {
d += G2Affine::generator();
}
assert!(!bool::from(c.is_identity()));
assert!(bool::from(c.is_on_curve()));
assert!(!bool::from(d.is_identity()));
assert!(bool::from(d.is_on_curve()));
assert_eq!(c, d);
}
{
let beta = Fp2 {
c0: Fp::from_raw_unchecked([
0xcd03_c9e4_8671_f071,
0x5dab_2246_1fcd_a5d2,
0x5870_42af_d385_1b95,
0x8eb6_0ebe_01ba_cb9e,
0x03f9_7d6e_83d0_50d2,
0x18f0_2065_5463_8741,
]),
c1: Fp::zero(),
};
let beta = beta.square();
let a = G2Projective::generator().double().double();
let b = G2Projective {
x: a.x * beta,
y: -a.y,
z: a.z,
};
let a = G2Affine::from(a);
assert!(bool::from(a.is_on_curve()));
assert!(bool::from(b.is_on_curve()));
let c = a + b;
assert_eq!(
G2Affine::from(c),
G2Affine::from(G2Projective {
x: Fp2 {
c0: Fp::from_raw_unchecked([
0x705a_bc79_9ca7_73d3,
0xfe13_2292_c1d4_bf08,
0xf37e_ce3e_07b2_b466,
0x887e_1c43_f447_e301,
0x1e09_70d0_33bc_77e8,
0x1985_c81e_20a6_93f2,
]),
c1: Fp::from_raw_unchecked([
0x1d79_b25d_b36a_b924,
0x2394_8e4d_5296_39d3,
0x471b_a7fb_0d00_6297,
0x2c36_d4b4_465d_c4c0,
0x82bb_c3cf_ec67_f538,
0x051d_2728_b67b_f952,
])
},
y: Fp2 {
c0: Fp::from_raw_unchecked([
0x41b1_bbf6_576c_0abf,
0xb6cc_9371_3f7a_0f9a,
0x6b65_b43e_48f3_f01f,
0xfb7a_4cfc_af81_be4f,
0x3e32_dadc_6ec2_2cb6,
0x0bb0_fc49_d798_07e3,
]),
c1: Fp::from_raw_unchecked([
0x7d13_9778_8f5f_2ddf,
0xab29_0714_4ff0_d8e8,
0x5b75_73e0_cdb9_1f92,
0x4cb8_932d_d31d_af28,
0x62bb_fac6_db05_2a54,
0x11f9_5c16_d14c_3bbe,
])
},
z: Fp2::one()
})
);
assert!(!bool::from(c.is_identity()));
assert!(bool::from(c.is_on_curve()));
}
}
#[test]
#[allow(clippy::eq_op)]
fn test_projective_negation_and_subtraction() {
let a = G2Projective::generator().double();
assert_eq!(a + (-a), G2Projective::identity());
assert_eq!(a + (-a), a - a);
}
#[test]
fn test_affine_negation_and_subtraction() {
let a = G2Affine::generator();
assert_eq!(G2Projective::from(a) + (-a), G2Projective::identity());
assert_eq!(G2Projective::from(a) + (-a), G2Projective::from(a) - a);
}
#[test]
fn test_projective_scalar_multiplication() {
let g = G2Projective::generator();
let a = Scalar::from_raw([
0x2b56_8297_a56d_a71c,
0xd8c3_9ecb_0ef3_75d1,
0x435c_38da_67bf_bf96,
0x8088_a050_26b6_59b2,
]);
let b = Scalar::from_raw([
0x785f_dd9b_26ef_8b85,
0xc997_f258_3769_5c18,
0x4c8d_bc39_e7b7_56c1,
0x70d9_b6cc_6d87_df20,
]);
let c = a * b;
assert_eq!((g * a) * b, g * c);
}
#[test]
fn test_affine_scalar_multiplication() {
let g = G2Affine::generator();
let a = Scalar::from_raw([
0x2b56_8297_a56d_a71c,
0xd8c3_9ecb_0ef3_75d1,
0x435c_38da_67bf_bf96,
0x8088_a050_26b6_59b2,
]);
let b = Scalar::from_raw([
0x785f_dd9b_26ef_8b85,
0xc997_f258_3769_5c18,
0x4c8d_bc39_e7b7_56c1,
0x70d9_b6cc_6d87_df20,
]);
let c = a * b;
assert_eq!(G2Affine::from(g * a) * b, g * c);
}
#[test]
fn test_is_torsion_free() {
let a = G2Affine {
x: Fp2 {
c0: Fp::from_raw_unchecked([
0x89f5_50c8_13db_6431,
0xa50b_e8c4_56cd_8a1a,
0xa45b_3741_14ca_e851,
0xbb61_90f5_bf7f_ff63,
0x970c_a02c_3ba8_0bc7,
0x02b8_5d24_e840_fbac,
]),
c1: Fp::from_raw_unchecked([
0x6888_bc53_d707_16dc,
0x3dea_6b41_1768_2d70,
0xd8f5_f930_500c_a354,
0x6b5e_cb65_56f5_c155,
0xc96b_ef04_3477_8ab0,
0x0508_1505_5150_06ad,
]),
},
y: Fp2 {
c0: Fp::from_raw_unchecked([
0x3cf1_ea0d_434b_0f40,
0x1a0d_c610_e603_e333,
0x7f89_9561_60c7_2fa0,
0x25ee_03de_cf64_31c5,
0xeee8_e206_ec0f_e137,
0x0975_92b2_26df_ef28,
]),
c1: Fp::from_raw_unchecked([
0x71e8_bb5f_2924_7367,
0xa5fe_049e_2118_31ce,
0x0ce6_b354_502a_3896,
0x93b0_1200_0997_314e,
0x6759_f3b6_aa5b_42ac,
0x1569_44c4_dfe9_2bbb,
]),
},
infinity: Choice::from(0u8),
};
assert!(!bool::from(a.is_torsion_free()));
assert!(bool::from(G2Affine::identity().is_torsion_free()));
assert!(bool::from(G2Affine::generator().is_torsion_free()));
}
#[test]
fn test_mul_by_x() {
let generator = G2Projective::generator();
let x = if super::BLS_X_IS_NEGATIVE {
-Scalar::from(super::BLS_X)
} else {
Scalar::from(super::BLS_X)
};
assert_eq!(generator.mul_by_x(), generator * x);
let point = G2Projective::generator() * Scalar::from(42);
assert_eq!(point.mul_by_x(), point * x);
}
#[test]
fn test_psi() {
let generator = G2Projective::generator();
let z = Fp2 {
c0: Fp::from_raw_unchecked([
0x0ef2ddffab187c0a,
0x2424522b7d5ecbfc,
0xc6f341a3398054f4,
0x5523ddf409502df0,
0xd55c0b5a88e0dd97,
0x066428d704923e52,
]),
c1: Fp::from_raw_unchecked([
0x538bbe0c95b4878d,
0xad04a50379522881,
0x6d5c05bf5c12fb64,
0x4ce4a069a2d34787,
0x59ea6c8d0dffaeaf,
0x0d42a083a75bd6f3,
]),
};
let point = G2Projective {
x: Fp2 {
c0: Fp::from_raw_unchecked([
0xee4c8cb7c047eaf2,
0x44ca22eee036b604,
0x33b3affb2aefe101,
0x15d3e45bbafaeb02,
0x7bfc2154cd7419a4,
0x0a2d0c2b756e5edc,
]),
c1: Fp::from_raw_unchecked([
0xfc224361029a8777,
0x4cbf2baab8740924,
0xc5008c6ec6592c89,
0xecc2c57b472a9c2d,
0x8613eafd9d81ffb1,
0x10fe54daa2d3d495,
]),
} * z,
y: Fp2 {
c0: Fp::from_raw_unchecked([
0x7de7edc43953b75c,
0x58be1d2de35e87dc,
0x5731d30b0e337b40,
0xbe93b60cfeaae4c9,
0x8b22c203764bedca,
0x01616c8d1033b771,
]),
c1: Fp::from_raw_unchecked([
0xea126fe476b5733b,
0x85cee68b5dae1652,
0x98247779f7272b04,
0xa649c8b468c6e808,
0xb5b9a62dff0c4e45,
0x1555b67fc7bbe73d,
]),
},
z: z.square() * z,
};
assert!(bool::from(point.is_on_curve()));
assert_eq!(generator.psi2(), generator.psi().psi());
assert_eq!(point.psi2(), point.psi().psi());
assert_eq!(generator.double().psi(), generator.psi().double());
assert_eq!(point.psi() + generator.psi(), (point + generator).psi());
let mut normalized_point = [G2Affine::identity()];
G2Projective::batch_normalize(&[point], &mut normalized_point);
let normalized_point = G2Projective::from(normalized_point[0]);
assert_eq!(point.psi(), normalized_point.psi());
assert_eq!(point.psi2(), normalized_point.psi2());
}
#[test]
fn test_clear_cofactor() {
let z = Fp2 {
c0: Fp::from_raw_unchecked([
0x0ef2ddffab187c0a,
0x2424522b7d5ecbfc,
0xc6f341a3398054f4,
0x5523ddf409502df0,
0xd55c0b5a88e0dd97,
0x066428d704923e52,
]),
c1: Fp::from_raw_unchecked([
0x538bbe0c95b4878d,
0xad04a50379522881,
0x6d5c05bf5c12fb64,
0x4ce4a069a2d34787,
0x59ea6c8d0dffaeaf,
0x0d42a083a75bd6f3,
]),
};
let point = G2Projective {
x: Fp2 {
c0: Fp::from_raw_unchecked([
0xee4c8cb7c047eaf2,
0x44ca22eee036b604,
0x33b3affb2aefe101,
0x15d3e45bbafaeb02,
0x7bfc2154cd7419a4,
0x0a2d0c2b756e5edc,
]),
c1: Fp::from_raw_unchecked([
0xfc224361029a8777,
0x4cbf2baab8740924,
0xc5008c6ec6592c89,
0xecc2c57b472a9c2d,
0x8613eafd9d81ffb1,
0x10fe54daa2d3d495,
]),
} * z,
y: Fp2 {
c0: Fp::from_raw_unchecked([
0x7de7edc43953b75c,
0x58be1d2de35e87dc,
0x5731d30b0e337b40,
0xbe93b60cfeaae4c9,
0x8b22c203764bedca,
0x01616c8d1033b771,
]),
c1: Fp::from_raw_unchecked([
0xea126fe476b5733b,
0x85cee68b5dae1652,
0x98247779f7272b04,
0xa649c8b468c6e808,
0xb5b9a62dff0c4e45,
0x1555b67fc7bbe73d,
]),
},
z: z.square() * z,
};
assert!(bool::from(point.is_on_curve()));
assert!(!bool::from(G2Affine::from(point).is_torsion_free()));
let cleared_point = point.clear_cofactor();
assert!(bool::from(cleared_point.is_on_curve()));
assert!(bool::from(G2Affine::from(cleared_point).is_torsion_free()));
let generator = G2Projective::generator();
assert!(bool::from(generator.clear_cofactor().is_on_curve()));
let id = G2Projective::identity();
assert!(bool::from(id.clear_cofactor().is_on_curve()));
let h_eff_modq: [u8; 32] = [
0xff, 0xff, 0x01, 0x00, 0x04, 0x00, 0x02, 0xa4, 0x09, 0x90, 0x06, 0x00, 0x04, 0x90, 0x16,
0xb1, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,
];
assert_eq!(generator.clear_cofactor(), generator.multiply(&h_eff_modq));
assert_eq!(
cleared_point.clear_cofactor(),
cleared_point.multiply(&h_eff_modq)
);
}
#[test]
fn test_batch_normalize() {
let a = G2Projective::generator().double();
let b = a.double();
let c = b.double();
for a_identity in (0..=1).map(|n| n == 1) {
for b_identity in (0..=1).map(|n| n == 1) {
for c_identity in (0..=1).map(|n| n == 1) {
let mut v = [a, b, c];
if a_identity {
v[0] = G2Projective::identity()
}
if b_identity {
v[1] = G2Projective::identity()
}
if c_identity {
v[2] = G2Projective::identity()
}
let mut t = [
G2Affine::identity(),
G2Affine::identity(),
G2Affine::identity(),
];
let expected = [
G2Affine::from(v[0]),
G2Affine::from(v[1]),
G2Affine::from(v[2]),
];
G2Projective::batch_normalize(&v[..], &mut t[..]);
assert_eq!(&t[..], &expected[..]);
}
}
}
}
#[cfg(feature = "zeroize")]
#[test]
fn test_zeroize() {
use zeroize::Zeroize;
let mut a = G2Affine::generator();
a.zeroize();
assert!(bool::from(a.is_identity()));
let mut a = G2Projective::generator();
a.zeroize();
assert!(bool::from(a.is_identity()));
let mut a = GroupEncoding::to_bytes(&G2Affine::generator());
a.zeroize();
assert_eq!(&a, &G2Compressed::default());
let mut a = UncompressedEncoding::to_uncompressed(&G2Affine::generator());
a.zeroize();
assert_eq!(&a, &G2Uncompressed::default());
}
#[allow(clippy::op_ref)]
#[test]
fn test_commutative_scalar_subgroup_multiplication() {
let a = Scalar::from_raw([
0x1fff_3231_233f_fffd,
0x4884_b7fa_0003_4802,
0x998c_4fef_ecbc_4ff3,
0x1824_b159_acc5_0562,
]);
let g2_a = G2Affine::generator();
let g2_p = G2Projective::generator();
assert_eq!(&g2_a * &a, &a * &g2_a);
assert_eq!(&g2_p * &a, &a * &g2_p);
assert_eq!(&g2_a * a, a * &g2_a);
assert_eq!(&g2_p * a, a * &g2_p);
assert_eq!(g2_a * &a, &a * g2_a);
assert_eq!(g2_p * &a, &a * g2_p);
assert_eq!(g2_p * a, a * g2_p);
assert_eq!(g2_a * a, a * g2_a);
}