openvm_rv32im_circuit/adapters/
branch.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
use std::{
    borrow::{Borrow, BorrowMut},
    cell::RefCell,
    marker::PhantomData,
};

use openvm_circuit::{
    arch::{
        AdapterAirContext, AdapterRuntimeContext, BasicAdapterInterface, ExecutionBridge,
        ExecutionBus, ExecutionState, ImmInstruction, Result, VmAdapterAir, VmAdapterChip,
        VmAdapterInterface,
    },
    system::{
        memory::{
            offline_checker::{MemoryBridge, MemoryReadAuxCols},
            MemoryAddress, MemoryAuxColsFactory, MemoryController, MemoryControllerRef,
            MemoryReadRecord,
        },
        program::ProgramBus,
    },
};
use openvm_circuit_primitives_derive::AlignedBorrow;
use openvm_instructions::{instruction::Instruction, riscv::RV32_REGISTER_AS};
use openvm_stark_backend::{
    interaction::InteractionBuilder,
    p3_air::BaseAir,
    p3_field::{AbstractField, Field, PrimeField32},
};

use super::RV32_REGISTER_NUM_LIMBS;

/// Reads instructions of the form OP a, b, c, d, e where if([a:4]_d op [b:4]_e) pc += c.
/// Operands d and e can only be 1.
#[derive(Debug)]
pub struct Rv32BranchAdapterChip<F: Field> {
    pub air: Rv32BranchAdapterAir,
    _marker: PhantomData<F>,
}

impl<F: PrimeField32> Rv32BranchAdapterChip<F> {
    pub fn new(
        execution_bus: ExecutionBus,
        program_bus: ProgramBus,
        memory_controller: MemoryControllerRef<F>,
    ) -> Self {
        let memory_controller = RefCell::borrow(&memory_controller);
        let memory_bridge = memory_controller.memory_bridge();
        Self {
            air: Rv32BranchAdapterAir {
                execution_bridge: ExecutionBridge::new(execution_bus, program_bus),
                memory_bridge,
            },
            _marker: PhantomData,
        }
    }
}

#[derive(Debug)]
pub struct Rv32BranchReadRecord<F: Field> {
    /// Read register value from address space d = 1
    pub rs1: MemoryReadRecord<F, RV32_REGISTER_NUM_LIMBS>,
    /// Read register value from address space e = 1
    pub rs2: MemoryReadRecord<F, RV32_REGISTER_NUM_LIMBS>,
}

#[derive(Debug)]
pub struct Rv32BranchWriteRecord {
    pub from_state: ExecutionState<u32>,
}

#[repr(C)]
#[derive(AlignedBorrow)]
pub struct Rv32BranchAdapterCols<T> {
    pub from_state: ExecutionState<T>,
    pub rs1_ptr: T,
    pub rs2_ptr: T,
    pub reads_aux: [MemoryReadAuxCols<T, RV32_REGISTER_NUM_LIMBS>; 2],
}

#[derive(Clone, Copy, Debug, derive_new::new)]
pub struct Rv32BranchAdapterAir {
    pub(super) execution_bridge: ExecutionBridge,
    pub(super) memory_bridge: MemoryBridge,
}

impl<F: Field> BaseAir<F> for Rv32BranchAdapterAir {
    fn width(&self) -> usize {
        Rv32BranchAdapterCols::<F>::width()
    }
}

impl<AB: InteractionBuilder> VmAdapterAir<AB> for Rv32BranchAdapterAir {
    type Interface =
        BasicAdapterInterface<AB::Expr, ImmInstruction<AB::Expr>, 2, 0, RV32_REGISTER_NUM_LIMBS, 0>;

    fn eval(
        &self,
        builder: &mut AB,
        local: &[AB::Var],
        ctx: AdapterAirContext<AB::Expr, Self::Interface>,
    ) {
        let local: &Rv32BranchAdapterCols<_> = local.borrow();
        let timestamp = local.from_state.timestamp;
        let mut timestamp_delta: usize = 0;
        let mut timestamp_pp = || {
            timestamp_delta += 1;
            timestamp + AB::F::from_canonical_usize(timestamp_delta - 1)
        };

        self.memory_bridge
            .read(
                MemoryAddress::new(AB::F::from_canonical_u32(RV32_REGISTER_AS), local.rs1_ptr),
                ctx.reads[0].clone(),
                timestamp_pp(),
                &local.reads_aux[0],
            )
            .eval(builder, ctx.instruction.is_valid.clone());

        self.memory_bridge
            .read(
                MemoryAddress::new(AB::F::from_canonical_u32(RV32_REGISTER_AS), local.rs2_ptr),
                ctx.reads[1].clone(),
                timestamp_pp(),
                &local.reads_aux[1],
            )
            .eval(builder, ctx.instruction.is_valid.clone());

        self.execution_bridge
            .execute_and_increment_or_set_pc(
                ctx.instruction.opcode,
                [
                    local.rs1_ptr.into(),
                    local.rs2_ptr.into(),
                    ctx.instruction.immediate,
                    AB::Expr::from_canonical_u32(RV32_REGISTER_AS),
                    AB::Expr::from_canonical_u32(RV32_REGISTER_AS),
                ],
                local.from_state,
                AB::F::from_canonical_usize(timestamp_delta),
                (4, ctx.to_pc),
            )
            .eval(builder, ctx.instruction.is_valid);
    }

    fn get_from_pc(&self, local: &[AB::Var]) -> AB::Var {
        let cols: &Rv32BranchAdapterCols<_> = local.borrow();
        cols.from_state.pc
    }
}

impl<F: PrimeField32> VmAdapterChip<F> for Rv32BranchAdapterChip<F> {
    type ReadRecord = Rv32BranchReadRecord<F>;
    type WriteRecord = Rv32BranchWriteRecord;
    type Air = Rv32BranchAdapterAir;
    type Interface = BasicAdapterInterface<F, ImmInstruction<F>, 2, 0, RV32_REGISTER_NUM_LIMBS, 0>;

    fn preprocess(
        &mut self,
        memory: &mut MemoryController<F>,
        instruction: &Instruction<F>,
    ) -> Result<(
        <Self::Interface as VmAdapterInterface<F>>::Reads,
        Self::ReadRecord,
    )> {
        let Instruction { a, b, d, e, .. } = *instruction;

        debug_assert_eq!(d.as_canonical_u32(), RV32_REGISTER_AS);
        debug_assert_eq!(e.as_canonical_u32(), RV32_REGISTER_AS);

        let rs1 = memory.read::<RV32_REGISTER_NUM_LIMBS>(d, a);
        let rs2 = memory.read::<RV32_REGISTER_NUM_LIMBS>(e, b);

        Ok(([rs1.data, rs2.data], Self::ReadRecord { rs1, rs2 }))
    }

    fn postprocess(
        &mut self,
        memory: &mut MemoryController<F>,
        _instruction: &Instruction<F>,
        from_state: ExecutionState<u32>,
        output: AdapterRuntimeContext<F, Self::Interface>,
        _read_record: &Self::ReadRecord,
    ) -> Result<(ExecutionState<u32>, Self::WriteRecord)> {
        let timestamp_delta = memory.timestamp() - from_state.timestamp;
        debug_assert!(
            timestamp_delta == 2,
            "timestamp delta is {}, expected 2",
            timestamp_delta
        );

        Ok((
            ExecutionState {
                pc: output.to_pc.unwrap_or(from_state.pc + 4),
                timestamp: memory.timestamp(),
            },
            Self::WriteRecord { from_state },
        ))
    }

    fn generate_trace_row(
        &self,
        row_slice: &mut [F],
        read_record: Self::ReadRecord,
        write_record: Self::WriteRecord,
        aux_cols_factory: &MemoryAuxColsFactory<F>,
    ) {
        let row_slice: &mut Rv32BranchAdapterCols<_> = row_slice.borrow_mut();
        row_slice.from_state = write_record.from_state.map(F::from_canonical_u32);
        row_slice.rs1_ptr = read_record.rs1.pointer;
        row_slice.rs2_ptr = read_record.rs2.pointer;
        row_slice.reads_aux = [
            aux_cols_factory.make_read_aux_cols(read_record.rs1),
            aux_cols_factory.make_read_aux_cols(read_record.rs2),
        ]
    }

    fn air(&self) -> &Self::Air {
        &self.air
    }
}